Answer:
The Velocity at which it travels, and the Distance from start to finish.
Explanation:
Calculate V*D=T which is Velocity*Distance=Time.
First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed

, and an accelerated motion on the y-axis, with initial speed

and acceleration

:


where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).
To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring

Therefore:

which has two solutions:

is the time of the beginning of the motion,

is the time at which the projectile hits the ground.
Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point:
Answer:
<h2>
<em>6,142mm²</em></h2>
Explanation:
Given the dimension of a paper measured by a ruler as 7.4 cm wide and 8.3 cm long, the area of the paper is expressed using the area for calculating the area of a rectangle as shown;
Area of the piece of paper = Length * Width
Given length = 7.4cm
Length = 74mm (Since 10mm = 1cm)
Width = 8.3cm
Width (in mm) = 83mm
We converted to mm since the ruler used to measure has a division of 1mm.
Substituting the given values into the formula, we will have:
Area of the piece of paper = 74mm * 83mm
Area of the piece of paper = 6,142mm²
<em>Hence, the area of the piece of paper is 6,142mm²</em>