True as the independent variable is over the dependent variable and controls it as the dependent relies on the independent.
Answer:
.
Explanation:
If the mass of an object is
and the velocity of that object is
, the linear momentum of that object would be
.
Assume that the initial velocity of the mass is positive (
.) However, the direction of the velocity is reversed after the impact. Thus, the sign of the new velocity of the object would be negative- the opposite of that of the initial velocity. The new velocity would be
.
Thus, the change in the velocity of the mass would be:
.
The change in the linear momentum of the mass would be:
.
Thus, the magnitude of the change of the linear momentum would be
.
Answer: Hawk.
Explanation: I dont know for sure, but thats what it looks like to me.
Answer:
Nuclear explosions produce air-blast effects similar to those produced by conventional explosives. The shock wave can directly injure humans by rupturing eardrums or lungs or by hurling people at high speed, but most casualties occur because of collapsing structures and flying debris.
Answer:
7.55 g
Explanation:
Given that:
Heat of fusion = 333kj/kg
Heat capacity, c = 4190 j/kg /k
The Number of grams of ice that will melt can be represented as y:
Number of grams of ice that will melt * heat of fusion = specific heat capacity * temperature change
y * 333 * 10^3 J = (4190) * (6 - 0)
333000y = 25140
y = 25140 / 333000
y = 0.0754954 kg
y = 0.0754954 * 100
y = 7.549 g
Hence, Number of grams of ice that will melt = 7.55 g