I believe the answer is the fourth one, hope this helps
When the reactants are heated, the average kinetic energy of the molecules increases. This means that more molecules are moving faster and hitting each other with more energy. If more molecules hit each other with enough energy to react, then the rate of the reaction increases.
Answer:
the case is the one with the greatest current, L=15 cm
, i = 2.19 10⁸ A
Explanation:
Ohm's law is
V = i R
Resistance is
R = ρ L / A
Where L is the length of the electrons pass and A the area perpendicular to the current
i = V / R
i = V (A / ρ L)
i = V / ρ (A / L)
We can calculate the relationship between the area and the length to know in which direction the maximum currents
Case 1
L = 0.15 m
A = 0.26 0.43 = 0.1118 m2
A / L = 0.1118 / 0.15
A / L = 0.7453 m
Case 2
L = 0.26 m
A = 0.15 0.43 = 0.0645 m2
A / L = 0.248 m
Case 3
L = 0.43 m
A = 0.15 0.26 = 0.039 m2
A / L = 0.0907 m
We can see that the case is the one with the greatest current, L=15 cm
Let's calculate the current
i = 5 / 1.7 10⁻⁸ (0.7453)
i = 2.19 10⁸ A
Answer: The smell of hot sizzling food reaches you several metres away, but to get the smell from cold food you have to go close because the kinetic energy of the particles of matter increases with the increase in temperature. In cold foods, kinetic energy is less while in hot foods, kinetic energy is more
hope this helps
Answer:
a) please find the attachment
(b) 3.65 m/s^2
c) 2.5 kg
d) 0.617 W
T<weight of the hanging block
Explanation:
a) please find the attachment
(b) Let +x be to the right and +y be upward.
The magnitude of acceleration is the same for the two blocks.
In order to calculate the acceleration for the block that is resting on the horizontal surface, we will use Newton's second law:
∑Fx=ma_x
T=m1a_x
14.7=4.10a_x
a_x= 3.65 m/s^2
c) <em>in order to calculate m we will apply newton second law on the hanging </em>
<em> block</em>
<em> </em>∑F=ma_y
T-W= -ma_y
T-mg= -ma_y
T=mg-ma_y
T=m(g-a_y)
a_x=a_y
14.7=m(9.8-3.65)
m = 2.5 kg
<em>the sign of ay is -ve cause ay is in the -ve y direction and it has the same magnitude of ax</em>
d) calculate the weight of the hanging block :
W=mg
W=2.5*9.8
=25 N
T=14.7/25
=0.617 W
T<weight of the hanging block