1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
3 years ago
12

How are the sun and Earth's moon different?(2 points)

Physics
1 answer:
katovenus [111]3 years ago
4 0

Answer: The Sun measures 1.4 million km across, while the Moon is a mere 3,474 km across. In other words, the Sun is roughly 400 times larger than the Moon. But the Sun also happens to be 400 times further away than the Moon, and this has created an amazing coincidence.

Explanation:

You might be interested in
Which example nest represents balanced forces ???
n200080 [17]

Answer:

an elevator stopped on the third floor a basketball shot into a hoop a sled sliding down a snowy hill a tow truck pulling a car out of a ditch

5 0
2 years ago
Cual de las escalas de temperatura es la mas antigua
IrinaVladis [17]

Answer:

the translation I got for this question is

Which of the temperature scales is the oldest?

Explanation:

and i searched for it and got this=

Fahrenheit scale

6 0
2 years ago
According to the Heisenberg uncertainty principle, if the uncertainty in the speed of an electron is 3.5 × 103 m/s, the uncertai
GREYUIT [131]

Explanation:

It is given that,

Uncertainty in the speed of an electron, \Delta v=3.5\times 10^3\ m/s

According to Heisenberg uncertainty principle,

\Delta x.\Delta p=\dfrac{h}{4\pi}

\Delta x is the uncertainty in the position of an electron

Since, \Delta p=m\Delta v

\Delta x=\dfrac{h}{4\pi.m \Delta v}

\Delta x=\dfrac{6.6\times 10^{-34}}{4\pi\times 9.1\times 10^{-31}\times 3.5\times 10^3}

\Delta x=1.64\times 10^{-8}\ m

So, the uncertainty in its position is 1.64\times 10^{-8}\ m. Hence, this is the required solution.

6 0
3 years ago
How does 3rd class lever make our work easier
sineoko [7]
In a third class lever, the effort is located between the load and the fulcrum. If the fulcrum is closer to the load, then less effort is needed to move the load. If the fulcrum is closer to the effort, then the load will move a greater distance. ... These levers are useful for making precise movements.
7 0
2 years ago
Read 2 more answers
A 3.5 kg object moving in two dimensions initially has a velocity v1 = (12.0 i^ + 22.0 j^) m/s. A net force F then acts on the o
lys-0071 [83]

Answer:

The work done by the force is 820.745 joules.

Explanation:

Let suppose that changes in potential energy can be neglected. According to the Work-Energy Theorem, an external conservative force generates a change in the state of motion of the object, that is a change in kinetic energy. This phenomenon is describe by the following mathematical model:

K_{1} + W_{F} = K_{2}

Where:

W_{F} - Work done by the external force, measured in joules.

K_{1}, K_{2} - Translational potential energy, measured in joules.

The work done by the external force is now cleared within:

W_{F} = K_{2} - K_{1}

After using the definition of translational kinetic energy, the previous expression is now expanded as a function of mass and initial and final speeds of the object:

W_{F} = \frac{1}{2}\cdot m \cdot (v_{2}^{2}-v_{1}^{2})

Where:

m - Mass of the object, measured in kilograms.

v_{1}, v_{2} - Initial and final speeds of the object, measured in meters per second.

Now, each speed is the magnitude of respective velocity vector:

Initial velocity

v_{1} = \sqrt{v_{1,x}^{2}+v_{1,y}^{2}}

v_{1} = \sqrt{\left(12\,\frac{m}{s} \right)^{2}+\left(22\,\frac{m}{s} \right)^{2}}

v_{1} \approx 25.060\,\frac{m}{s}

Final velocity

v_{2} = \sqrt{v_{2,x}^{2}+v_{2,y}^{2}}

v_{2} = \sqrt{\left(16\,\frac{m}{s} \right)^{2}+\left(29\,\frac{m}{s} \right)^{2}}

v_{2} \approx 33.121\,\frac{m}{s}

Finally, if m = 3.5\,kg, v_{1} \approx 25.060\,\frac{m}{s} and v_{2} \approx 33.121\,\frac{m}{s}, then the work done by the force is:

W_{F} = \frac{1}{2}\cdot (3.5\,kg)\cdot \left[\left(33.121\,\frac{m}{s} \right)^{2}-\left(25.060\,\frac{m}{s} \right)^{2}\right]

W_{F} = 820.745\,J

The work done by the force is 820.745 joules.

6 0
2 years ago
Other questions:
  • Compare and contrast the average kinetic energy of 0.5 L of coffee at 34ÁC,
    5·1 answer
  • Can someone help me on 2 science question,
    9·2 answers
  • Calculate the potential energy of a rock that has a 45 kg mass and is sitting
    6·1 answer
  • Heliox is a helium‑oxygen mixture that may be used in scuba tanks for divers working at great depths. It is also used medically
    6·1 answer
  • The number of oscillations that a wave completes per unit of time in called its _______.
    13·1 answer
  • A solid block of copper, which is a good conductor, has a cavity in its interior. Within the cavity, insulated from the conducto
    8·1 answer
  • A solid ball of radius rb has a uniform charge density rho.
    11·1 answer
  • Are women sports underpaid compared with man? (Example: Women's USA soccer team is paid way less then Men's USA soccer team)
    5·2 answers
  • Which term is most applicable to a discussion of angular momentum in the context of black holes?
    11·1 answer
  • A 5.0 kg book is lying on a 0.25 meter high table.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!