1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
3 years ago
5

Solve for .x. 2r - 12 9 x +9

Mathematics
1 answer:
kirill115 [55]3 years ago
6 0

Answer:

naiga

Step-by-step explanation:

/ 'lkjm566666666666666666666

You might be interested in
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
a bee flies at 9 feet per second directly to a flower bed from its hive. the bee stays at the flower bed for 15 minutes then fli
qaws [65]

Answer:

Assuming the question is asking how much time it takes each way, the answer would be 2 minutes from the hive to the flowerbed and 3 minutes back.

Assuming the question is the amount of distance between the hive and the flower bed, the answer is 1080 feet.

Step-by-step explanation:

So the total amount of time it was away from the hive was 20 minutes. Out of those 20 minutes, 15 minutes were spent in the flowerbed. So that means travel time was 5 minutes. Now, going is 9 and coming back is 6, so 9+6=15, 5/15=1/3, 1/3*9=3 and 1/3*6=2

Knowing that information, lets solve what the question could be because I have no idea. The amount of distance from the hive to the flower bed is 1080 feet. I got this by doing 9 (the amount of feet per second) times 120 (the amount of seconds in 3 minutes.) You could do this with 6 but I found it easier to multiply 9*120 compared to 6*180.

If it's the commute time, we already solved that.

If I didn't answer the real question, please just comment on this.

6 0
3 years ago
What is the highest common factor of 60 and 75
Assoli18 [71]
<span>The factors of 60 are 60, 30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1.The factors of 75 are 75, 25, 15, 5, 3, 1.<span>The common factors of 60 and 75 are 15, 5, 3, 1, intersecting the two sets above.</span><span>In the intersection factors of 60 ∩ factors of 75 the greatest element is 15.</span><span>Therefore, the greatest common factor of 60 and 75 is 15.

</span></span>
8 0
3 years ago
GE = 3x - 11 FD = 2.x Find GE<br>Can someone help me??​
11Alexandr11 [23.1K]

Answer:

22

Step-by-step explanation:

Given the following

GE = 3x - 11 FD = 2x

Let us assume GE is parallel to FD, hence GE = FD

3x - 11 = 2x

3x - 2x = 0+11

x = 11

Get GE

GE = 3x - 11

GE = 3(11)-11

GE= 33 - 11

GE = 22

Hence the length of GE is 22

3 0
2 years ago
Find the distance between the two points rounding to the nearest tenth (if necessary)
Stolb23 [73]
The answer is 13.

STEPS:

√ (3 - 8)^2 + (8 - (-4) )^2


√ (-5)^2 + (12)^2


√ 25 + 144


√ 139


13
6 0
2 years ago
Other questions:
  • A box is filled with 7 brown cards, 3 yellow cards, and 8 red cards. A card is chosen at random from the box. What is the probab
    15·1 answer
  • Rectangle is 2/5 in. long and 1/3 in. wide.
    5·1 answer
  • The auditorium has five doors. Three doors are only entrances; one door is only an exit; and the fifth door can be used to eithe
    7·1 answer
  • How to simplify 5k + 3 + 2j – 2 – k
    13·2 answers
  • 95% of what number is 57? I need to find the whole number
    5·2 answers
  • Is the relationship linear, exponential, or neither?
    9·1 answer
  • How to solve this one​
    8·1 answer
  • help I’ll give brainliest
    5·1 answer
  • What is the algabric way to find the area of a triangle
    9·1 answer
  • he graph of the function f(x) = (x − 3)(x + 1) is shown. On a coordinate plane, a parabola opens up. It goes through (negative 1
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!