Answer:
Explanation:
30 N force is pulling total mass of 15 kg , so acceleration in the system of masses
= 30 / 15
= 2 m / s²
Let us now consider forces acting on 9 kg . 30 N is pulling it in forward direction . Tension T in the string attached to it is pulling it in reverse direction
so net force on it
30 - T
Applying Newton's law of motion on it
30 - T = mass x acceleration
30 - T = 9 x 2
30 - 18 = T
T = 12 N
Answer:
a = 0,1[m/s^2]
Explanation:
First we need to indentify the initial data.
And using this kinematic equation we have:
![v = 4[m/s]\\v_{0}= 2 [m/s] \\t = 20[s]\\\\v= v_{0}+a*t\\a=\frac{v-v_{0}}{t} \\a= \frac{4-2}{20} \\a=0.1[m/s^{2}]](https://tex.z-dn.net/?f=v%20%3D%204%5Bm%2Fs%5D%5C%5Cv_%7B0%7D%3D%202%20%5Bm%2Fs%5D%20%5C%5Ct%20%3D%2020%5Bs%5D%5C%5C%5C%5Cv%3D%20v_%7B0%7D%2Ba%2At%5C%5Ca%3D%5Cfrac%7Bv-v_%7B0%7D%7D%7Bt%7D%20%5C%5Ca%3D%20%5Cfrac%7B4-2%7D%7B20%7D%20%5C%5Ca%3D0.1%5Bm%2Fs%5E%7B2%7D%5D)
Is an imbalance of electric charges within or on the surface of a material.
Given :
The mass of the balloon was 1890 kg and had a volume of 11,430 m3 .
The balloon floats at a constant height of 6.25m above the ground.
To Find :
The density of the hot air in the balloon.
Solution :
We know,
Volume × ( Density of surrounding air - Density of hot air ) = mass
Putting given values in above equation, we get :

Therefore, the density of hot air in the balloon is 1.125 kg m³.
Johannes Kepler- he did it by observing the ‘Tycho Brahe’. His 3rd law was published 10 years later to his first two laws.