Answer:
Before:


After:




Explanation:
<u>Conservation of Momentum</u>
Two objects of masses m1 and m2 moving at speeds v1o and v2o respectively have a total momentum of

After the collision, they have speeds of v1f and v2f and the total momentum is

Impulse J is defined as

Where F is the average impact force and t is the time it lasted
Also, the impulse is equal to the change of momentum

As the total momentum is conserved:


We can compute the speed of the second object by solving the above equation for v2f

The given data is


a) The impulse will be computed at the very end of the answer
b) Before the collision


c) After collision

Compute the car's speed:


And the car's momentum is

The Impulse J of the system is zero because the total momentum is conserved, i.e. \Delta p=0.
We can compute the impulse for each object

The force can be computed as

The force on the car has the same magnitude and opposite sign
Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>
D.) Vertical relationships involve unequal status, while horizontal relationships represent equal status.
HOPE THIS HELPS!
Compressions are the areas of high pressure while rarefractions are low pressure area