Answer:
stay the same.
Explanation: Period 3 consists of the full 1s, 2s, and 2p electron orbitals, plus the 3s and 3p valence orbitals, which are filled with a total of 8 more electrons as we move from left (Na) to the far right (Ar):
Na: 1s2 2s2 2p6 3s1
Ar: s2 2s2 2p6 3s2 3p6
As we move from left to right, and ignoring the already-filled 1s, 2s, and 2p orbitals, the period three starting and ending elements have the following:
Na: 3s1
Ar: 3s2, 3p6
All the new electrons electrons filled the third energy level (3s and 3p). So the energy level does not change, just the orbitals.
The ionization energy is the minimum amount of energy required to remove the most loosely bound electron of an isolated neutral gaseous atom or molecule.The first ionisation energy is the energy required to remove one mole of the most loosely held electrons from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of 1+. I hope this helps :3
<span>The correct answer is d. The reaction releases more energy than it absorbs. An example of an exothermic reaction is fire. Connecting the carbon atoms in wood with the oxygen in the air causes flames and gives of heat and light.</span>
Answer:
Average atomic mass = 17.5 amu.
Explanation:
Given data:
X-17 isotope = atomic mass17.2 amu, abundance:78.99%
X-18isotope = atomic mass 18.1 amu, abundance 10.00%
X-19isotope = atomic mass:19.1 amu, abundance: 11.01%
Average atomic mass of X = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) + (abundance of 3rd isotope × its atomic mass) / 100
Average atomic mass = (78.99×17.2)+(10.00×18.1) +(11.01+ 19.1) /100
Average atomic mass = 1358.628 + 181 +210.291 / 100
Average atomic mass = 1749.919 / 100
Average atomic mass = 17.5 amu.
Answer:
it can last for 30 minutes
Explanation:
because it is very good at giving off heat, extothermal heat can last for quite a while.