Answer:
molar mass M(s) = 65.326 g/mol
Explanation:
- M(s) + H2SO4(aq) → MSO4(aq) + H2(g)
∴ VH2(g) = 231 mL = 0.231 L
∴ P atm = 1.0079 bar
∴ PvH2O(25°C) = 0.03167 bar
Graham´s law:
⇒ PH2(g) = P atm - PvH2O(25°C)
⇒ PH2(g) = 1.0079 bar - 0.03167 bar = 0.97623 bar = 0.9635 atm
∴ nH2(g) = PV/RT
⇒ nH2(g) = ((0.9635 atm)(0.231 L))/((0.082 atmL/Kmol)(298 K))
⇒ nH2(g) = 9.1082 E-3 mol
⇒ n M(s) = ( 9.1082 E-3 mol H2(g) )(mol M(s)/mol H2(g))
⇒ n M(s) = 9.1082 E-3 mol
∴ molar mass M(s) [=] g/mol
⇒ molar mass M(s) = (0.595 g) / (9.1082 E-3 mol)
⇒ molar mass M(s) = 65.326 g/mol
The soup water would turn into soap.
<span>The action of suspending someone or something or the condition of being suspended, in particular.
OR<span><span /></span>
The system of springs and shock absorbers by which a vehicle is cushioned from road conditions.</span>
The answer to the question stated above is cumulus clouds.
<span>When looking up at the clouds, you can usually make out different shapes and figures with cumulus clouds.
</span>Cumulus <span>low-level clouds. They </span>are the puffy, white, cotton-top clouds that look so soft.
What do u need help with?