<h3><u>Answer;</u></h3>
A) Its temperature will fall continuously until it condensed into a liquid.
<h3><u>Explanation</u>;</h3>
- <em><u>Steam or water vapor is the gaseous state of liquid water. When water vapor above a temperature of 100 degrees Celsius is cooled, the temperature falls continuously, and it undergoes condensation at a temperature of 100 degrees Celsius and turns into liquid water.</u></em>
- The change of state from gaseous to liquid state occurs as a result of latent heat of vaporization that the water vapor carries.
2 valence electrons
Explanation:
Most transition metals have 2 valence electrons. Valence electrons are the sum total of all the electrons in the highest energy level (principal quantum number n). Most transition metals have an electron configuration that is ns2(n−1)d , so those ns2 electrons are the valence electrons.
Answer:
<h3>the charge is +1 </h3>
Explanation:
<h3>as we know nutral atom have equal number of protons and electrons</h3><h3>from the give this element have 11 protons so if it is nutral it must have 11 electrons,but in the question this atom is charged this means it gains or losts certain amount of electrons , this atom has 11 proton and 10 electron from this we can understand this atom dicreases by 1 from its proton, this means it losts one electron .</h3><h3>when an atom lostes electron it's charge become positive with the number of electrons it lostes .</h3><h3>this atom lost 1 electron there fore it have +1 charge and become ion called cathion</h3>
Answer:
Star's
Explanation:
Stars have their own brightness
Answer:
643g of methane will there be in the room
Explanation:
To solve this question we must, as first, find the volume of methane after 1h = 3600s. With the volume we can find the moles of methane using PV = nRT -<em>Assuming STP-</em>. With the moles and the molar mass of methane (16g/mol) we can find the mass of methane gas after 1 hour as follows:
<em>Volume Methane:</em>
3600s * (0.25L / s) = 900L Methane
<em>Moles methane:</em>
PV = nRT; PV / RT = n
<em>Where P = 1atm at STP, V is volume = 900L; R is gas constant = 0.082atmL/molK; T is absolute temperature = 273.15K at sTP</em>
Replacing:
PV / RT = n
1atm*900L / 0.082atmL/molK*273.15 = n
n = 40.18mol methane
<em>Mass methane:</em>
40.18 moles * (16g/mol) =
<h3>643g of methane will there be in the room</h3>