a region around a magnetic material or a moving electric charge within which the force of magnetism acts.
Answer:

Explanation:
Let's firstly identify the atomic number (the number of protons) of Pu. This is done by referring to the periodic table and finding Pu. The atomic number of Pu is:

In order to identify the type of a nuclear decay, we need to find the N/Z ratio. This is the ratio between the number of neutrons and the atomic number of an isotope. The number of neutrons is found by subtracting the number of protons from the mass number:

That said, the N/Z ratio equation becomes:

This is a relatively high number thinking about the belt of stability of isotopes. Ideally, stable isotopes with a low Z value have an N/Z ratio of 1. Heavier isotopes with Z > 50 would have a slightly higher N/Z ratio and would be stable around N/Z = 1.25. This means we wish to decrease the N/Z ratio as much as possible.
Among all the decays, alpha-decay is preferred to decrease the N/Z ratio significantly (1.45 is much higher than 1.25). That said, we'll release an alpha particle with some nucleotide X of mass M and atomic number Z:

According to the mass and charge conservation law:


Identify an element with Z = 92 in the periodic table. This is uranium, U:

Answer:
During a chemical reaction, substance called reactants are combined to form a new substance called products.
this sentence describes reaction and products of a chemical reaction
Because of the attraction forces known as hydrogen bonding, water is referred to as a polar solvent. An attraction between molecules known as a hydrogen bond occurs when partially positive hydrogen atoms are drawn to partially negative F, O, or N atoms.
<h3>What is a hydrogen bond?</h3>
A hydrogen bond (or H-bond) is a strong electrostatic attraction between an electronegative atom holding a lone pair of electrons, known as the hydrogen bond acceptor, and a hydrogen (H) atom that is covalently attached to a more electronegative "donor" atom or group.
<h3>How can hydrogen atoms join together?</h3>
When a hydrogen atom bonds with an electronegative atom, powerful intermolecular forces called hydrogen bonds are produced. The hydrogen bond acceptor's electronegativity will rise, resulting in a stronger hydrogen bond.
To know more about Hydrogen Bond visit:
brainly.com/question/10904296
#SPJ4