Answer:
Explanation:
Given
mass of boy=36 kg
length of swing=3.5 m
Let T be the tension in the swing
At top point 
where v=velocity needed to complete circular path
Th-resold velocity is given by 

So apparent weight of boy will be zero at top when it travels with a velocity of 
To get the velocity at bottom conserve energy at Top and bottom
At top 
Energy at Bottom 
Comparing two as energy is conserved



Apparent weight at bottom is given by

Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
Answer:
C. Just measure the volume of the container it is in
Explanation:
Another why of measuring the volume of gas is by filling a contractor with water then in invert a glass jar air will miss place the space taken by water then measure the volume of water misplaced to get the volume to air