Scientific form = 6.5 x 109.
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
Explanation:
If the center of the load is directly above the vertebrae, there is no torque in the system. This is a good thing so that the vertebrae are not put out of alignment over time. (Of course, this still doesn't prevent compression of the vertebrae over time, which is a possibility.)
Capable of being reversed or of reversing: as a : capable of going through a series of actions (as changes) either backward or forward
Example : water ----> ice
melts into water again<span />