As per the question the initial speed of the car [ u] is 42 m/s.
The car applied its brake and comes to rest after 5.5 second.
The final velocity [v] of the car will be zero.
From the equation of kinematics we know that
[ here a stands for acceleration]



Here a is taken negative as it the car is decelerating uniformly.
We are asked to calculate the stopping distance .
From equation of kinematics we know that
[here S is the distance]
![= 42*5.5 +\frac{1}{2} [-7.64] [5.5]^2 m](https://tex.z-dn.net/?f=%3D%2042%2A5.5%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5B-7.64%5D%20%5B5.5%5D%5E2%20m)
[ans]
This is the CBS's this is a B a bit
Components connected in series are connected along a single path, so the same current flows through all of the components. If the light bulbs are connected in parallel, the currents through the light bulbs combine to form the current in the battery, while the voltage drop is across each bulb and they all glow.
The only thing you need to know in order to solve this task is that <span>plank length (which is force x), should equal the increase in potential energy, so what we have now : (mass)* g * (height).
It has to look like that: </span>
<span>F * 3.0 = 150 x 9.81 x 1.20
Then solve for F, the result should be in newtones = 588N
Do hope it makes sense.</span>
Answer:
The answer is option A.
You speed up 8 m/s every second
Hope this helps you