1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
3 years ago
11

A car turns into a driveway that slopes upward at a 9 degree angle, car is moving at 6.5 m/s. If the driver lets the car coast,

how far along the slope will the car roll before being instantaneously at rest and start rolling back? Please show kinematic steps. Thanks!
Physics
2 answers:
expeople1 [14]3 years ago
6 0

To put it in the simplest form, the automatic transmission has a torque converter that uses the transmission fluid to turn the other side of the torque converter. Ex. Putting two room fans facing each other and turning one on and wind flowing from one fan makes the second fan facing the rotating fan turn and the idling engine probably doesn't have enough power to hold it.

I guess more technically, in an automatic, the car selects a neutral gear (no gear) when it is at rest, and the brake pedal is pressed. Upon releasing the brake, the car will apply a small forward force that will hold the car steady on a very small gradient or propel it forwards slowly on a flat or downhill gradient. This force is only started when the brake is being released, as this is the indicator for the car to change into 1st gear.

In a situation where a car is rolling back down the hill it is facing up, there could be one or more of several situations at hand.

Most likely, it simply lacks power to hold on the gradient of the slope. In this case, you'll have to perform a hill start to maintain brake force until forward propulsion is enough to move the car forward. Hill starts are almost always necessary for manual transmission cars. Additionally, it could be the driver's pedal transfer from brake to accelerator is to slow. That would also account for some part of the slip.

Okay, what's missing here is the clutch. The clutch as I'm sure you're aware is a series of plates that connect to each other and transfer power due to friction. The amount of friction is adjustable depending on how much force is applied to hold the plates together (or apart). It is easier to see this in a manual car at low speeds, where the driver hovers the clutch actuation pedal around the "Friction Point". This point is the fine line between moving (increased friction between clutch plates holds them together more firmly, thus transferring more power) and staying stationary (clutch plates disengaged from each other). From the Friction Point, any further release of the clutch will cause the car to move forwards because the transmission is engaging with more of the engine's power. Depressing the clutch pedal back in will not have any effect, as it will just keep the clutch plates separate.

In an automatic car, this is all controlled by computer algorithms, determining how much the clutch should be engaged to reach a certain speed. Taking off from the lights on a hill for example will not necessarily register as any different to taking off on flat ground. The effect of this is that the car is assuming that is requires a certain number of revs and a predetermined clutch setting to accelerate smoothly. Due to the increased force the hill provides, the car will move backwards until the power again reaches a level that will overcome its slippage.

One other thing, is that clutches work both ways. Since only friction holds them together, the torque exerted by the wheels back through the drive-train to the clutch can cause the plates to slip when they are not completely engaged. This results in the wheels moving independently of the running engine, as the clutch is separating the forces they would exert on each other.

I think the key thing to note is that despite not having a pedal to operate it, Automatic cars still have a clutch - just one that relies on a computer to function.

If it's not the engine or the clutch which are both behaving as normal, and we're still assuming it's an auto, there could be a problem with the car's computer system, transmission, clutch or gearbox that is causing the slippage. I would assume this is less likely, but it might be worth checking if it happens to your car. your frickin' welcome

Solnce55 [7]3 years ago
4 0
<span>Agreed, so you need to draw a diagram to start. That is the car on the driveway that has a nine degree slope. From there , you can then draw a free body diagram to analyze the forces on the car. Give it a try please.

You have the ability to answer the problem by your own.

I hope my answer has come to your help. Have a nice day ahead and may God bless you always!

</span>
You might be interested in
A force of 30 N stretches a very light ideal spring 0.73 m from equilibrium. What is the force constant (spring constant) of the
pantera1 [17]

Answer:

Explanation:

F = k*n

F = 30N

k = ???

N = 0.73 M

F = k* N

30N = k * 0.73

k = 30N / 0.73

k = 41.1

5 0
3 years ago
One astronomer believes that the density of the universe remains constant. One physicist believes that the density of the univer
Llana [10]
I think the third option is the answer 
6 0
3 years ago
Read 2 more answers
The mass luminosity relation L  M 3.5 describes the mathematical relationship between luminosity and mass for main sequence sta
ivanzaharov [21]

Answer:

(a) <u>11.3 L</u>

(b) <u>10 M</u>

Explanation:

The mass-luminosity relationship states that:

Luminosity ∝ Mass^3.5

Luminosity = (Constant)(Mass)^3.5

So, in order to find the values of luminosity or mass of different stars, we take the luminosity or mass of sun as reference. Therefore, write the equation for a star and Sun, and divide them to get:

Luminosity of a star/L = (Mass of Star/M)^3.5 ______ eqn(1)

where,

L = Luminosity of Sun

M = mass of Sun

(a)

It is given that:

Mass of Star = 2M

Therefore, eqn (1) implies that:

Luminosity of star/L = (2M/M)^3.5

Luminosity of Star = (2)^3.5 L

<u>Luminosity of Star =  11.3 L</u>

(b)

It is given that:

Luminosity of star = 3160 L

Therefore, eqn (1) implies that:

3160L/L = (Mass of Star/M)^3.5

taking ln on both sides:

ln (3160) = 3.5 ln(Mass of Star/M)

8.0583/3.5 = ln(Mass of Star/M)

Mass of Star/M = e^2.302

<u>Mass of Star = 10 M</u>

3 0
4 years ago
Problema en la cual aplicaste velocidades, impulso, conservación del movimiento y de la energía.
Kazeer [188]
Huh huh what? ¿Can’t you translate?
6 0
3 years ago
according to newton's first law, massive objects have _____ inertia than small objects, which means it takes more force to move
Ksenya-84 [330]
According to newton's first law, massive objects have larger inertia than small objects, which means it takes more force to move bigger things than smaller ones.
4 0
3 years ago
Read 2 more answers
Other questions:
  • A student constructed a series circuit consisting of a 12.0-volt battery, a 10.0-ohm lamp, and a
    8·1 answer
  • A mass weight of 120N is hung from two strings. what is the tension?
    15·2 answers
  • Producing a current by moving a wire through a magnetic field is called “BLANK” induction
    12·2 answers
  • A spherical balloon has a radius of 8.35 m and is filled with helium. how large a cargo can it lift, assuming that the skin and
    14·1 answer
  • A 2.0 kg mass weighs 10 Newtons on planet X. what is the acceleration due to gravity on planet X? Show the work.
    8·1 answer
  • Which of the following would decrease the resistance to the flow of an electric current through a body?
    9·1 answer
  • 2 Points
    12·1 answer
  • The theoretical line perpindicular to the surface where a light ray hits a mirror is called the
    6·1 answer
  • What are the basic rules of basketball? Are the rules different for men’s versus women’s competition?
    12·2 answers
  • A boy walked 4m east then 3m south find the displacement
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!