Answer:
a) Neutralisation
b) Combustion
c) Synthesis
d) Decomposition
e) Neutralisation
f) Double Displacement Reaction
h) Single Displacement Reaction
i) Double Displacement Reaction
j) Combustion
Explanation:
Synthesis is a reaction where various compounds/ elements react to form a totally new compound.
Decomposition is a reaction where a single compound breaks down into several components due to excessive heating or energy applied.
Single Displacement Reaction is a type of chemical reaction where an element reacts with a compound and takes the place of another element in that compound.
Double Displacement Reaction is a type of chemical reaction where two compounds react, and the positive ions (cation) and the negative ions (anion) of the two reactants switch places, forming two new compounds or products.
Combustion is a reaction where a compound/ element oxidises in the presence of Oxygen.
Neutralisation reaction is a reaction where an acid reacts with a base to form a salt.
Answer:
Density is a physical property that is determined by dividing the mass of a given amount of a substance by its volume.
Explanation:
Answer:
The solubility of methylacetylene is 0,11 g L⁻¹
Explanation:
Henry's law is a gas law that states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid.
The formula is:
C = kH P
Where C is solubility of the gas (In mol/L)
kH is Henry constant (9,23x10⁻² mol L⁻¹ atm⁻¹)
An P is partial pressure (0,301 atm)
Solving, C = 2,78x10⁻³ mol L⁻¹. In grams per liter:
2,78x10⁻³ mol L⁻¹ₓ
= <em>0,11 g L⁻¹</em>
<em></em>
I hope it helps!
Answer:
It is a chemical change.
Explanation:
When the electricity is off, the filament cools down to its original physical state. This physical process repeats every time the light is turned on and off. However, if the bulb is cracked and air is introduced, the oxygen in the air reacts with the tungsten filament which then undergoes a chemical change.
<h3>Answer:</h3>
Rb = + 1
S = + 4
O = - 2
<h3>Explanation:</h3>
Oxidation states of the elements were calculated keeping in mind the basic rules of assigning oxidation states which included assignment of +1 charge to first group elements i.e. Rubidium (Rb) and assignment of -2 charge to Oxygen atom. Then the oxidation state of Sulfur was calculated as follow,
Rb₂ + S + O₃ = 0
Above zero (0) means that the overall molecule is neutral.
Putting values of Rb and O,
(+1)₂ + S + (-2)₃ = 0
(+2) + S + (-6) = 0
+2 + S - 6 = 0
S - 6 = -2
S = -2 + 6
S = + 4