Molecules in solids are packed a lot closer together than molecules in liquids and gases, so there is far less space between solid particles. Because of this, solid particles cannot move around quickly and freely like liquids and gases, instead they only vibrate so are fairly 'locked' into the same place, so solids have fixed volume and space.
Answer:
177.8kJ/mol
Explanation:
In this reaction, the heat of decomposition is the same as the heat of formation. This is a decomposition reaction.
Given parameters:
ΔHf CaCO₃ = -1206.9kJ/mol
ΔHf CaO = −635.6 kJ/mol
ΔHf CO₂ = −393.5 kJ/mol
The heat of decomposition =
Sum of ΔHf of products - Sum of ΔHf of reactants
The equation of the reaction is shown below:
CaCO₃ → CaO + CO₂
The heat of decomposition = [ -635.6 + (-393.5)] - [−1206.9 ]
= -1029.1 + 1206.9
= 177.8kJ/mol
Answer:
I don't know how can i do
Explanation:
please give me hint
The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
<h3>
What is Mole ?</h3>
A mole is a very important unit of measurement that chemists use.
A mole of something means you have 6.023 x 10 ²³ of that thing.
- For 2.15 mol of hydrogen sulphide (H₂S) :
1 mole hydrogen sulphide (H₂S) = 34.08088 grams
Therefore,
2.15 mol of hydrogen sulphide (H₂S) = 34.08088 grams x 2.15 mol
= 73.272 gm
- For 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) ;
1 mol of lead(II) iodide, (PbI₂) = 461.00894 grams
Therefore,
3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) = 461.00894 grams x 3.95 × 10⁻³ mol
= 1.82 gm
Hence,The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
Learn more about mole here ;
brainly.com/question/21323029
#SPJ1