the answer would be winter because the north would be facing away from the son therefor making the northern states cold.
Answer:
B. Positive charge is caused by lack of electrons. A positive ion is formed by the loss of negatively charged electrons. Although the number of protons does not change in the ion, there is an excess number of protons over electrons which produces the positive charge. All electrons in the outer energy level are lost.
C. If there are more electrons than protons, then the element is a negative ion. The amount of neutrons does not play a factor into making a difference between an atom or an ion.
Explanation:
please give brainliest. :)
and have a great day!
Carbon is the element at the heart of all organic compounds, and it is such a versatile element because of its ability to form straight chains, branched chains, and rings. Because these chains and rings can have all sorts of different functional groups in all sorts of different ways (giving the compond all sorts of different physical and chemical properties), carbon's ability to form the backbone of these large structures is critial to the existence of most chemical compounds known to man. Above all, the organic molecules crucial to the biochemical systems that govern living organisms depend on carbon compounds.
Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = 
Enthalpy of formation of chlorine gas = 
Enthalpy of formation of ICl gas = 
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:

Entropy of the surrounding = 

1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.