Hello from MrBillDoesMath!
Answer:
Number marbles >= 5
Discussion:
The only certain thing we can say is the jar contains at least 5 (green) marbles. The table shows probabilities, not certainties, and is no guarantee that any other marbles even exist in the jar,
Thank you,
MrB
Answer:
1
Step-by-step explanation:
Hope this helps
Answer:
(0,0)
Step-by-step explanation:
<h2><em>we can write (3x^2-5y^2) as (3x-5y)^2</em></h2><h2><em>(
3
x
−
5
y
)
2 as (
3
x−
5
y
)
(
3
x−
5
y
)</em></h2><h2><em>3
x
(
3
x
−
5
y
)
−
5
y
(
3x
−5
y
)</em></h2><h2><em>3
x
(
3
x
−
5
y
)
−
5
y
(3
x
−
5
y
)</em></h2><h2><em>3
x
(
3
x
)
+
3
x
(
−
5y
)
−
5
y
(
3
x
)
−
5
y(
-5
y
)</em></h2><h2><em>9
x
2
−
15
x
y
−
15y
x
+
25
y
2
</em></h2><h2><em> Subtract 15
y
x from −
15
x
y
.</em></h2><h2><em>9
x
2
−
30
xy
+
25
y
2</em></h2><h2><em> HOPE IT HELPS(◕‿◕✿) </em></h2><h2><em> SMILE!! </em></h2>
You can calculate it using the law of cosines: c^2=a^2+b^2-2*a*b*cos(C)
your triangle is
CD=15=a
CE=?=b
DE=CE+3=b+3=c
and C=90°
-> insert those values, with c substituted with b+3 to remove c
c^2=a^2+b^2-2*a*b*cos(C)
(b+3)^2=15^2+b^2-2*15*b*cos(90)
cos(90)=0->
(b+3)^2=15^2+b^2
b^2+2*3*b+3^2=225+b^2
6b+9=225
6b=216
b=36=CE
DE=CE+3=36+3=39