1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
3 years ago
10

Jenny wanted to test whether worms prefer light or darkness best. After

Physics
1 answer:
myrzilka [38]3 years ago
3 0

Answer:

True

Explanation:

An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable. You are changing light or dark

You might be interested in
What happens when you change the number of electrons in an atom
aalyn [17]
<h2>Answer: It becomes an Ion </h2>

When an atom has gained or lost electrons (negative charge), it becomes an ion.

In this sense:

<h2>Ions are atoms that have <u>gained or lost</u> electrons in their electronic cortex. </h2><h2> </h2>

If a neutral atom <u>loses electrons</u>, it remains with an excess of positive charge and transforms into a positive ion or <u>cation</u>, whereas if a neutral atom <u>gains electrons</u>, it acquires an excess of negative charge and transforms into a negative ion or <u>anion</u>.

It is then how ions form bonds with other atoms differently depending on the number of electrons they have.

8 0
3 years ago
A 15x10^-6c charge is placed at the origin and a 9x10^-6C charge is placed on the x-axis at x=1.00m. where, on the x-axis is the
Harlamova29_29 [7]

The Electric field is zero at a distance 2.492 cm from the origin.

Let A be point where the charge 15\times10^-6 C is placed which is the origin.

Let B be the point where the charge 9\times 10^-6 C is placed. Given that B is at a distance 1 cm from the origin.

Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.

i.e., at distance 'x' from B.

Using Coulomb's law, \frac{kQ_A^2}{d_A^2} = \frac{kQ_B^2}{d_B^2},

Q_A = 15\times 10^-6 C

Q_B=9\times10^-6C

d_A = 1+x cm

d_B=x cm

k is the Coulomb's law constant.

On substituting the values into the above equation, we get,

\frac{(15\times10^-6)^2}{(1+x)^2} =\frac{(9\times10^-6)^2}{x^2}

Taking square roots on both sides and simplifying and solving for x, we get,

1.67x = 1+x

Therefore, x = 1.492 cm

Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.

Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926

#SPJ4

3 0
1 year ago
a car initially at 65.00 m/s accelerates at 22.39 m/s^2. How far has the car traveled before it comes to a stop
Gennadij [26K]

Answer:

94.35 meter

Step by step explanation

7 0
2 years ago
If a magnet is broken into two pieces, what happens to the magnetic poles?
Nikitich [7]

Answer:

Each piece will have a north pole and a south pole

Explanation:

5 0
3 years ago
Read 2 more answers
Planet 1 orbits Star 1 and Planet 2 orbits Star 2 in circular orbits of the same radius. However, the orbital period of Planet 1
hichkok12 [17]

Answer:

The mass of Star 2 is Greater than the mass of Start 1. (This, if we suppose the masses of the planets are much smaller than the masses of the stars)

Explanation:

First of all, let's draw a free body diagram of a planet orbiting a star. (See attached picture).

From the free body diagram we can build an equation with the sum of forces between the start and the planet.

\sum F=ma

We know that the force between two bodies due to gravity is given by the following equation:

F_{g} = G\frac{m_{1}m_{2}}{r^{2}}

in this case we will call:

M= mass of the star

m= mass of the planet

r = distance between the star and the planet

G= constant of gravitation.

so:

F_{g} =G\frac{Mm}{r^{2}}

Also, if the planet describes a circular orbit, the centripetal force is given by the following equation:

F_{c}=ma_{c}

where the centripetal acceleration is given by:

a_{c}=\omega ^{2}r

where

\omega = \frac{2\pi}{T}

Where T is the period, and \omega is the angular speed of the planet, so:

a_{c} = ( \frac{2\pi}{T})^{2}r

or:

a_{c}=\frac{4\pi^{2}r}{T^{2}}

so:

F_{c}=m(\frac{4\pi^{2}r}{T^{2}})

so now we can do the sum of forces:

\sum F=ma

F_{g}=ma_{c}

G\frac{Mm}{r^{2}}=m(\frac{4\pi^{2}r}{T^{2}})

in this case we can get rid of the mass of the planet, so we get:

G\frac{M}{r^{2}}=(\frac{4\pi^{2}r}{T^{2}})

we can now solve this for T^{2} so we get:

T^{2} = \frac{4\pi ^{2}r^{3}}{GM}

We could take the square root to both sides of the equation but that would not be necessary. Now, the problem tells us that the period of planet 1 is longer than the period of planet 2, so we can build the following inequality:

T_{1}^{2}>T_{2}^{2}

So let's see what's going on there, we'll call:

M_{1}= mass of Star 1

M_{2}= mass of Star 2

So:

\frac{4\pi^{2}r^{3}}{GM_{1}}>\frac{4\pi^{2}r^{3}}{GM_{2}}

we can get rid of all the constants so we end up with:

\frac{1}{M_{1}}>\frac{1}{M_{2}}

and let's flip the inequality, so we get:

M_{2}>M_{1}

This means that for the period of planet 1 to be longer than the period of planet 2, we need the mass of star 2 to be greater than the mass of star 1. This makes sense because the greater the mass of the star is, the greater the force it applies on the planet is. The greater the force, the faster the planet should go so it stays in orbit. The faster the planet moves, the smaller the period is. In this case, planet 2 is moving faster, therefore it's period is shorter.

6 0
3 years ago
Other questions:
  • Please any one need help on this
    9·1 answer
  • Two movers are pushing a large crate with a force of 60.0 n each. one pushes north, the other east. what is the equilibrant forc
    15·1 answer
  • According to the kinetic theory of gas particles, when do gas particles have some type of force between them?
    7·2 answers
  • Please help I'm stuck on these 2 problems would help so much!! 10 POINTS<br><br> Thanks!
    10·1 answer
  • Although blood cells are contained within a special liquid called plasma, the cells themselves are___________.
    6·1 answer
  • 6. Directions: Drag each item to the correct location on the diagram. Many of the astronomical events that can be witnessed from
    13·2 answers
  • 50pts: Fill this out.
    8·2 answers
  • What is newton's 3rd law of physics ​
    7·1 answer
  • Which nucleus completes the following equation?
    10·1 answer
  • 10. A man throws a water balloon down off the edge of a building. If he wants the water
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!