Answer:
The intensity level in the room is 63 dB
Explanation:
To calculate the intensity of sound in the room, we use the equation of definition of decibels
β = 10 log (I / Io) (1)
With “I” the sound intensity and “Io” the threshold intensity 1.0 10⁻⁻¹² W/m²
To calculate the intensity we will use the initial data and remember the power of the emitted sound is constant, in addition that the sound propagates in three-dimensional form or on a spherical surface
I = P/A ⇒ P = I A
The area of a sphere is 4 π r², where I can calculate of 1
β/10 = log (I/Io)
I / Io = 
I = Io 
I = 1 10⁻¹² 10⁽¹⁰⁰/¹⁰⁾ = 1 10⁻¹² 10¹⁰
I = 1.0 10⁻² W
With this we can calculate the intensity for a distance of 20 m
I = 1.0 10⁻² / ( 4π 20²)
I = 2.0 10⁻⁶ W/m²
We have already found the intensity at the point of interest, so we can calculate the intensity in decibels at this point with equation 1
β = 10 log(2.0 10⁻⁶ / 1.0 10⁻¹²)
β = 10 log ( 2 10⁶) = 10 6.3
β = 63 dB
The intensity level in the room is 63 dB
Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

In this case we have an electron (-e) and a proton (e), so:

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

The sentences are invalid and unsound.
<h3><u>Explanation</u>:</h3>
The fire is defined as the vigorous oxidation of a substance. Now oxidation can occur in presence of any oxidising agent. Like magnesium in presence of nitrogen in high temperature with a dazzling brownish flame to produce magnesium nitride. So fire can be produced in absence of oxygen.
Oxygen is present everywhere in world. So production of a whole room without oxygen is very tough to produce and costly process. So its very unsound.
Answer:
Average speed = 10,000 m/s
Explanation:
Given the following data;
Distance = 2m
Time = 0.0002secs
To find the average speed;
Average speed = distance/time
Average speed = 2/0.0002
Average speed = 10,000 m/s
Therefore, the average speed of the
electron is 10,000 meters per seconds.