Nicolaus Copernicus
This theory was first proposed by Nicolaus Copernicus. Copernicus was a Polish astronomer. He first published the heliocentric system in his book: De revolutionibus orbium coelestium, "On the revolutions of the heavenly bodies," which appeared in 1543.
Answer: The force was 13.92 Newtons.
Explanation:
First, let's recall the second Newton's law:
The net force is equal to the mass times the acceleration, or:
F = m*a
where:
F = force
m = mass
a = acceleration.
When the player hits the ball with the bat, he applies a force that accelerates the ball for a small period of time, that increases greatly the speed of the ball.
In this case, we know that:
the mass of the ball is 0.145 kg
The acceleration of the ball is 96m/s^2
Then we can input those values in the above equation to find the force.
F = 0.145kg*96m/s^2 = 13.92 N
The force was 13.92 Newtons.
The energy of the ski lift at the base is kinetic energy:

where m is the mass of the ski lift+the people carried, and

is velocity at the base.
As long as the ski lift goes upward, its velocity decreases and its kinetic energy converts into potential energy. Eventually, when it reaches the top, its final velocity is v=0, so no kinetic energy is left and it has all converted into gravitational potential energy, which is

where

and h is the height at the top of the hill.
So, since the total energy must conserve, we have

and so

from which we find the height:
depends t what stage in the fall it is. If it is at the peak, it is fully potential. If it is in the middle, it has both. If it is at the bottom of the fall, it is completely kinetic