Answer:
v = 2.974
Explanation:
Perhaps the formula should be
v = √(2*g*d (sin(θ) - uk*cos(θ) ) This is a bit easier to read.
v = √(2* 9.80*0.725(0.707 - 0.12*0.707) ) Substitute values. Find 2*g*d
v = √14.21 * (0.707 - 0.0849) Figure out Sin(θ) - uk cos(θ)
v = √14.21 * (0.6222)
v = √8.8422 Take the square root of the value
v = 2.974
300
Explanation:
100 x 3 =300 simple and easy
In order to solve this problem, we will first need to find the electric field at the origin without the 3rd charge
E1 = (9x10^9)(13.4x10^-9)/(9.4x10^-2)^2 = 13648.7 V/m towards the negative y-axis
E2 = (9x10^9)(4.23x10^-9)/(4.99x10^-2)^2 = 15289.1 V/m towards the positive x-axis
The red arrow shows the direction of which the electric field points.
To make the electric field at the origin 0, we must find a location where q3 = the magnitude of q1 and q2
Etotal = sqrt(E1+E2) = 20494.97 V/m
E3 = 20494.97 = (9x10^9)(14.23x10^-9)/(d)^2
d = 0.079 m = 7.9 cm
Answer: Thermal Energy is energy resulting from the motion of particles; It is a form of kinetic energy and is transferred as heat; Thermal Energy Transfer can occur by three methods: Conduction; Convection; Radiation; Conduction. Conduction is the transfer of thermal energy through direct contact between . particles of a substance.
Explanation: