Answer:
I think its 68(pi)
Step-by-step explanation:
u must get first the slant height then get the SA of the cone and get the SA of the cylinder and add them but don't forget to subtract a base from ur final answer
Answer:

Step-by-step explanation:
Using the addition formulae for cosine
cos(x ± y) = cosxcosy ∓ sinxsiny
---------------------------------------------------------------
cos(120 + x) = cos120cosx - sin120sinx
= - cos60cosx - sin60sinx
= -
cosx -
sinx
squaring to obtain cos² (120 + x)
=
cos²x +
sinxcosx +
sin²x
--------------------------------------------------------------------
cos(120 - x) = cos120cosx + sin120sinx
= -cos60cosx + sin60sinx
= -
cosx +
sinx
squaring to obtain cos²(120 - x)
=
cos²x -
sinxcosx +
sin²x
--------------------------------------------------------------------------
Putting it all together
cos²x +
cos²x +
sinxcosx +
sin²x +
cos²x -
sinxcosx +
sin²x
= cos²x +
cos²x +
sin²x
=
cos²x +
sin²x
=
(cos²x + sin²x) = 
Answer:
x = 107
Step-by-step explanation:
x and 107 are alternate interior angles and alternate interior angles are equal
so x= 107
Answer:
40:16, 16:40, 40/16, 16/40
Answer: Graph B
=====================================================
Explanation:
Point A appears to be at (2.5, -1)
If we shift 6 units to the left, then we subtract 6 from the x coordinate. So the new x coordinate is now 2.5-6 = -3.5
If we shift 4 units up, then we add 4 to the y coordinate to go from -1 to -1+4 = 3
Overall, the point A(2.5, -1) moves to A'(-3.5, 3)
Graph B is the answer because of this. The other points B and C will follow the same pattern as point A does.