Given:
The inequality is:

To find:
The y-intercept, slope and type of line (solid or dotted).
Solution:
The slope intercept form of a line is:
...(i)
Where, m is the slope and b is the y-intercept.
We have,

The relation equation is:
...(ii)
On comparing (i) and (ii), we get


It means the slope is 5 and the y-intercept is 3.
The sign of the inequality in the given inequality is ">". It means the boundary line is not included in the solution set. So, the boundary line is a dotted line.
Therefore, the slope is 5, the y-intercept is 3 and the line is a dotted line.
She started with 32 pieces.
Explanation: If she had 5 children and each child received 5 pieces, you can determine that she gave her children a total of 25 pieces because 5 x 5 = 25. If she took 7 pieces for herself before giving the rest away, you can determine that she had 32 pieces of candy to start with because 25 + 7 = 32.
Answer:
no parallelogram, mr clean thus cannot answer.
Answer:
Check the explanation
Step-by-step explanation:
Here we have to first of all carry out dependent sample t test. consequently wore goggles first was selected at random for the reason that the reaction time in an emergency taken with goggles would be greater than the amount of reaction time in an emergency taken with not so weakened vision. So that we will get the positive differences d = impaired - normal
b)
To find 95% confidence interval first we need to find sample mean and sample sd for difference d = impaired minus normal.
We can find it using excel that is in the first attached image below,
Therefore sample mean
= 0.98
Sample sd
= 0.3788
To find 95% Confidence interval we can use TI-84 calculator,
Press STAT ----> Scroll to TESTS ---- > Scroll down to 8: T Interval and hit enter.
Kindly check the attached image below.
Therefore we are 95% confident that mean difference in braking time with impaired vision and normal vision is between ( 0.6888 , 1.2712)
Conclusion : As both values in the interval are greater than 0 , mean difference impaired minus normal is not equal to 0
There is significant evidence that there is a difference in braking time with impaired vision and normal vision at 95% confidence level .