Answer:
hey answer in the comment section
Answer:
e see that the distances are different, the only way that the two beams of light approach simultaneously is that event 2 (farthest) occurs first than event 1
Explanation:
This is an ejercise in special relativity, where the speed of light is constant.
Let's carefully analyze the approach, we see the two events at the same time.
The closest event time is
c = (x₁-300) / t
t = (x₁-300) / c
The time for the other event is
t = (x₂- 600) / c
since they tell us that we see the events simultaneously, we can equalize
(x₁ -300) / c = (x₂ -600) / c
x₁ = x₂ - 300
We see that the distances are different, the only way that the two beams of light approach simultaneously is that event 2 (farthest) occurs first than event 1
We know, weight = mass * gravity
10 = m * 9.8
m = 10/9.8 = 1.02 Kg
Now, Let, the gravity of that planet = g'
g' = m/r² [m,r = mass & radius of that planet ]
g' = M/10 / (1/2R)² [M, R = mass & radius of Earth ]
g' = 4M / 10R²
g' = 2/5 * M/R²
g' = 2/5 * g
g' = 2/5 * 9.8
g' = 3.92
Weight on that planet = planet's gravity * mass
W' = 3.92 * 1.02
W' = 4 N
In short, Your Answer would be 4 Newtons
Hope this helps!
12N because you are just adding those two up on the same side
Answer:
Explanation:
We shall take the help of vector form of displacement . Taking east as i and north as j
4.0m N = 4 j
7.5 m E = 7.5 i
6.8 m S = - 6.8 j
3.7 m E, = 3.7 i
3.6 m S = - 3.6 j
5.3 m W = - 5.3 i
3.7 m N, = 3.7 j
5.6 m W = - 5.6 i
4.4 m S = - 4.4 j
4.9 m W = - 4.9 i
Total displacement = 4j +7.5 i -6.8j+3.7i-3.6j-5.3i+3.7j-5.6i-4.4j-4.9i
= -4.6 i -7.1 j
magnitude of displacement = 
= 8.46 m
Direction
Tanθ = 7.1/ 4.6
θ = 57⁰ south of west .
distance walked = 4+7.5 +6.8+3.7+3.6+5.3+3.7+5.6+4.4+4.9
= 49.5 m