Answer:
Explanation:
The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is
where f is frequency, v is velocity, and λ is wavelength. Putting all this together:
and solving for velocity,
v = 16.0(97.5) so
v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):
and cross multiply to get
1560t = 11000 so
t = 7.1 seconds
Answer:
Explanation:
The formula that you are working with is F = m*a
Since mass is one part of the formula if you increase the mass, you are going to increase the force.
The second one is much more difficult to answer because it is basically incomplete. This is one way to interpret it. If you start at a certain speed and increase during a known time period then effectively you are defining acceleration which is "a" in the formula.
Without those modifications, there is no answer.
You can observe this law in practice if <span>a ray of light reflects off of a flat mirror.
</span>
Law of reflection states that both direction of both incoming and outgoing rays of light make the same angle with respect to surface normal.
The air particle inside the balloon will collide more with each other and the temperature inside the balloon will increase.
As a person squeezed and applies the pressure to the outside of a balloon, the air particle inside the balloon gains energy and collide with each other, the particle of the air also try leave the balloon surface will implies equal pressure on the wall of the balloon, as the pressure outside the balloon increase, the inside pressure will also increase.