The most reasonable way to measure absolute zero would have been to extrapolate the ideal gas law.
<h3>What is Absolute zero?</h3>
This is referred to the temperature at which a thermodynamic system has the lowest form of energy.
Guillaume Amontons used gas equation to prove that absence of heat was theoretically possible which would have involved only extrapolating the ideal gas law.
Read more about Absolute zero here brainly.com/question/18560146
#SPJ1
This is a straightforward question related to the surface energy of the droplet.
<span>You know the surface area of a sphere is 4π r² and its volume is (4/3) π r³. </span>
<span>With a diameter of 1.4 mm you have an original droplet with a radius of 0.7 mm so the surface area is roughly 6.16 mm² (0.00000616 m²) and the volume is roughly 1.438 mm³. </span>
<span>The total surface energy of the original droplet is 0.00000616 * 72 ~ 0.00044 mJ </span>
<span>The five smaller droplets need to have the same volume as the original. Therefore </span>
<span>5 V = 1.438 mm³ so the volume of one of the smaller spheres is 1.438/5 = 0.287 mm³. </span>
<span>Since this smaller volume still has the volume (4/3) π r³ then r = cube_root(0.287/(4/3) π) = cube_root(4.39) = 0.4 mm. </span>
<span>Each of the smaller droplets has a surface area of 4π r² = 2 mm² or 0.0000002 m². </span>
<span>The surface energy of the 5 smaller droplets is then 5 * 0.000002 * 72.0 = 0.00072 mJ </span>
<span>From this radius the surface energy of all smaller droplets is 0.00072 and the difference in energy is 0.00072- 0.00044 mJ = 0.00028 mJ. </span>
<span>Therefore you need roughly 0.00028 mJ or 0.28 µJ of energy to change a spherical droplet of water of diameter 1.4 mm into 5 identical smaller droplets. </span>
Answer:
BRAINLIEST PLZZZ
Explanation:
All types of organisms are capable of reproduction, growth and development, maintenance, and some degree of response to stimuli.