To get this it helps to know the electronegativity numbers of the elements but it isn't required. You just need to know that Fluorine is the most electronegative element and that the farther away from Fluorine you are on the periodic table, the less electronegative you get. The one exception to this rule is hydrogen with actually has an electronegativity of 2.1 while lithium has one of 1.0. Also the higher difference in electronegativity between two atoms the more polar the bond is.
Now to start the question. H-Br could be a contender since H has an electronegativity number of 2.1 and Br is relatively close to Fluorine so we'll put that one aside for now. H-Cl knocks out A because both bonds have H but one bond has Br and the other has Cl. Cl is closer to Fluorine than Br so answer B is the contender now. For answer C, I and Br are too close to have a higher electronegativity difference than H-Cl so that one isn't it. Finally for answer D, I is much closer to Cl than H is so the electronegativity difference is much less, making your answer B.
The grams of 22.9 % sugar solution that contain 68.5 g of sugar is 299.13 g of solution
<u><em>calculation</em></u>
22.9% means that there are 22.9 g of sugar in 100 g of solution.
what about 68.5 g of sugar
- <em>by cross multiplication</em>
=[(68.5 g sugar x 100 g solution) /22.9 g sugar] =299.13 g of solution
Nb; <em>g sugar cancel each other</em>
Option 3 using forest land to build homes
Answer:
0.85 Molar Na2O
Explanation:
Determine the moles of sodium oxide, Na2O, in 10 grams by dividing by the molar mass of Na2O (61.98 g/mole).
(10 g Na2O)/(61.98 g/mole) = 0.161 moles Na2O.
Molar is a measure of concentration. It is defined as moles/liter. A 1 M solution contains 1 mole of solute per liter of solvent. [200 ml water = 0.2 Liters water.]
In this case, we have 0.161 moles Na2O in 0.200 L of solvent.
(0.161 moles Na2O)/(0.200 L) = 0.85 Molar Na2O