The volume will decrease, because as the temperature is lowered, the atoms will move slowler and they won't fill as much the balloon
ΔG deg will be negative above 7.27e+3 K.
<u>Explanation:</u>
- The ΔG deg with the temperature can be found using the formula and the formula is given below
- ΔG deg = ΔH deg - T ΔS deg
- Given data, ΔH deg = 181kJ and ΔSdeg=24.9J/K
- -T ΔS deg will be always negative and ΔG deg = ΔH deg will be positive and ΔG deg will be negative at relatively high temperatures and positive at relatively low temperatures
- solving the equation and substitute ΔGdeg=0
- ΔGdeg = ΔHdeg - T ΔSdeg
- T= ΔHdeg/ΔSdeg
- T=181 kJ / 2.49e-2 kJK-1
- By simplification we get
- T=7.27 × 10^3 K.
- Therefore, Go will be negative above 7.27 × 10^3 K
- Since ΔG deg = -RT lnK, when ΔGdeg < 0, K > 1 so the reaction will have K > 1 above 7.27 × 10^3 K.
- ΔG deg will be negative above 7.27e+3 K.
<u></u>
<u />
Answer:
1569 torr
Explanation:
Assuming ideal behaviour and constant temperature, we can solve this problem by using <em>Boyle's law</em>, which states:
Where in this case:
We <u>input the data given by the problem</u>:
- 202 mL * 505 torr = 65.0 mL * P₂
And <u>solve for P₂</u>:
Heat energy added to the water is.
<h3>
Answer:</h3>
3.67 mol Al
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
2.21 × 10²⁴ atoms Al
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.66988 mol Al ≈ 3.67 mol Al