Answer:
The acceleration of the object is 20 meters per second square = 20 m/s^2
Explanation:
Recall that acceleration is defined as the change in velocity divided the time it takes for the change. Therefore , if the object accelerates from rest (zero velocity) to 70 m/s , the change in velocity is (70 m/s - 0 m/s = 70 m/s)
which divided by the 3.5 seconds it took for the change, gives:
acceleration = (70 m/s / 3.5 s ) = 20 m/s^2
Answer:
A 10 N force pointing up
Explanation:
If the net acceleration of the object is horizontal pointing to the right, that means that all vertical forces must have canceled out, and the only ones "unbalanced" are the horizontal ones (10 N to the right minus 5 N to the left giving a net force of 5 N to the right).
Since they mentioned only one vertical force pointing down (10 N), there must be another one of same magnitude but pointing in opposite direction (up).
Then there must also be a 10 N force pointing up acting on the object.
Answer:
The capacite is C=5.32 uF using the equations of voltage and energy in capacitance
Explanation:
The energy holds is 5 J and the resistor dissipates 2J so the energy total is 3J
Using:

Voltage in this case is the energy dissipated so



Using the equation to find capacitance

F
C= 5.32 uF because u is the symbol for micro that is equal to 
Answer:
it is reduced four times.
Explanation:
By definition, the electric field is the force per unit charge created by a charge distribution.
If the charge creating the field is a point charge, the force exerted by it on a test charge, must obey Coulomb´s Law, so, it must be inversely proportional to the square of the distance between the charges.
So, if the distance increases twice, as the force is inversely proportional to the square of the distance, and the square of 2 is 4, this means that the magnitude of the force exerted on the test charge must be 4 times smaller.