Because you would fall so slow that you would not need one.
When I went through with the math, the answer I came upon was:
<span>6.67 X 10^14 </span>
<span>Here is how I did it: First of all we need to know the equation. </span>
<span>c=nu X lamda </span>
<span>(speed of light) = (frequency)(wavelength) </span>
<span>(3.0 X 10^8 m/s) = (frequency)(450nm) </span>
<span>We want the answer in meters so we need to convert 450nm to meters. </span>
<span>450nm= 4.5 X 10^ -7 m </span>
<span>(3.0 X 10^8 m/s) = (frequency)(4.5 X 10^ -7 m) </span>
<span>Divide the speed of light by the wavelength. </span>
<span>(3.0 X 10^8m/s) / (4.5 X 10^ -7m) =6.67 X 10^ 14 per second or s- </span>
<span>Answer: 6.67 X 10^14 s- hope this helps</span>
<u>26mm</u> is the thinnest thickness of oil that will brightly reflect the light.
What is wavelength ?
The distance over which a periodic wave's shape repeats is known as the wavelength in physics. It is a property of both traveling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings. The spatial frequency is the reciprocal of wavelength. The Greek letter lambda () is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
To learn more about wavelength visit:
brainly.com/question/16051869
#SPJ4
The current is defined as the amount of charge Q that passes through a given point of a wire in a time

:

Since I=500 A and the time interval is

the charge is

One electron has a charge of

, therefore the number of electrons that pass a point in the wire during 4 minutes is

electrons
Hello!
Most ocean waves obtain their energy and motion from the wind.
Ocean waves are surface waves that move across the surface of the ocean. When wind touches the surface of the water, there is friction in the contact zone. This friction causes a drag effect, that makes wrinkles on the surface of the water. As the wrinkles get bigger, they transform into full-blown waves, and the taller the wave, the more energy it can extract from the wind, making them even bigger and to move longer distances.
Have a nice day!