First, find the amount of time for the dart to hit the board using this equation: t = d/v
t = 2 m/ 15 m/s = 0.133 s
Then, find the height the dart has fallen from its initial point using this equation: h = 0.5gt²
h = 0.5(9.81 m/s²)(0.133 s)² = 0.0872 m or 8.72 cm
Since the diameter of the bull's eye is only 5 cm, and you started at the same level of the top of the bull's eye, that means the maximum allowance would only be 5 cm. Since it exceeded to 8.72 cm, it means that <em>Veronica will not hit the bull's eye.</em>
Answer:
Option B. 5 nC
Explanation:
From the question given above, the following data were obtained:
Capicitance (C) = 100 pF
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:
1 pF = 1×10¯¹² F
Therefore,
100 pF = 100 pF × 1×10¯¹² F / 1 pF
100 pF = 1×10¯¹⁰ F
Next, we shall determine the quantity of charge. This can be obtained as follow:
Capicitance (C) = 1×10¯¹⁰ F
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Q = CV
Q = 1×10¯¹⁰ × 50
Q = 5×10¯⁹ C
Finally, we shall convert 5×10¯⁹ C to nano coulomb (nC). This can be obtained as follow:
1 C = 1×10⁹ nC
Therefore,
5×10¯⁹ C = 5×10¯⁹ C × 1×10⁹ nC / 1 C
5×10¯⁹ C = 5 nC
Thus, the quantity of charge is 5 nC
Yes. On a circular path, the direction of motion is constantly changing. Change of direction is acceleration, even at constant speed.
Solve the following word problems.
1. The ratio of red marbles and blue marbles that Carlo has is 8: 3. When he
exchanged 35 red marbles for 20 blue marbles from his brother, he was left with
equal number of red and blue marbles.
How many red and blue marbles did he have at the beginning
How many red and blue marbles did he have now