Answer:
A.The spring constant for B is one quarter of the spring constant for A.
Explanation:
If spring A oscillates at twice the frequency of spring B, and period is frequency inverted. It means spring B has a period twice of spring A's.

As
, and the 2 springs have the same mass




So A.The spring constant for B is one quarter of the spring constant for A. is the correct answer.
The answer is 9.8 ms^-2, because there is only one force acting on the object so the acceleration will be numerically equal to the gravitational field strength.
Answer:
A.) 1430 metres
B.) 80 seconds
Explanation:
Given that the train accelerates from rest at 1.1m/s^2 for 20s. The initial velocity U will be:
U = acceleration × time
U = 1.1 × 20 = 22 m/s
It then proceeds at constant speed for 1100 m
Then, time t will be
Time = distance/ velocity
Time = 1100/22
Time = 50 s
before slowing down at 2.2m/s^2 until it stops at the station.
Deceleration = velocity/time
2.2 = 22/t
t = 22/2.2
t = 10s
Using area under the graph, the distance between the two stations will be :
(1/2 × 22 × 20) + 1100 + (1/2 × 22 × 10)
220 + 1100 + 110
1430 m
The time taken between the two stations will be
20 + 50 + 10 = 80 seconds
Answer:
the Voltages become negative instead of positive but the magnitude remains the same.
Explanation:
If we remove the positive charge by dragging it back to the box at the bottom, and drag a negative charge (blue) toward the middle of the screen, the Voltages become negative instead of positive but the magnitude remains the same.