Answer:
C is the only reasonable answer.. but this is 6th grade science and I'm in 7th, so I'm pretty sure I'm right
As they contain, green pigement they can perform "Photosynthesis" and obtains energy from that process
Hope this helps!
Answer:
CCl4- tetrahedral bond angle 109°
PF3 - trigonal pyramidal bond angles less than 109°
OF2- Bent with bond angle much less than 109°
I3 - linear with bond angles = 180°
A molecule with two double bonds and no lone pairs - linear molecule with bond angle =180°
Explanation:
Valence shell electron-pair repulsion theory (VSEPR theory) helps us to predict the molecular shape, including bond angles around a central atom, of a molecule by examination of the number of bonds and lone electron pairs in its Lewis structure. The VSEPR model assumes that electron pairs in the valence shell of a central atom will adopt an arrangement which tends to minimize repulsions between these electron pairs by maximizing the distance between them. The electrons in the valence shell of a central atom are either bonding pairs of electrons, located primarily between bonded atoms, or lone pairs. The electrostatic repulsion of these electrons is reduced when the various regions of high electron density assume positions as far apart from each other as possible.
Lone pairs and multiple bonds are known to cause more repulsion than single bonds and bond pairs. Hence the presence of lone pairs or multiple bonds tend to distort the molecular geometry geometry away from that predicted on the basis of VSEPR theory. For instance CCl4 is tetrahedral with no lone pair and four regions of electron density around the central atom. This is the expected geometry. However OF2 also has four regions of electron density but has a bent structure. The molecule has four regions of electron density but two of them are lone pairs causing more repulsion. Hence the observed bond angle is less than 109°.
Compared to carbon nanotube, carbon nanofiber (CNF) is a unique quasi-one-dimensional nanostructure with a lot of edges and flaws (CNT). Additionally, their low cost and wide availability make them a valuable nanomaterial for upcoming technology.
<h3>what are the development and characterization of Carbon Nanofiber for Additively Manufactured Piezo resistive Sensors?</h3>
In accordance with the semiconductor material's piezo resistive effect, diffusion resistance is used to manufacture piezo resistive sensors on substrates of semiconductor materials. The diffusion resistor is connected in the substrate in the form of a bridge, allowing the substrate to be employed directly as a measuring sensor element.
- Carbon nanofiber/polylactic acid filament for fused filament fabrication (FFF) and additive manufacturing (AM) strain sensors was studied for the effects of production factors.
- To investigate the effects of CNF weight fraction, extrusion temperature, and number of extrusions on sensor performance, a design of experiments (DOE) approach was used. In the initial extrusion, dry melt mixing was used to combine CNFs and powdered PLA material.
- Through the DOE procedure, it was discovered that extruding CNF/PLA material for two complete extrusions at 185 °C resulted in material with material with material with dramatically improved electrical characteristics in comparison to unmodified material.
- Piezoresistive dog-bone shaped sensors were made using the best manufacturing technique using three different sizes of 5.0, 7.5, and 10.0 wt% CNF/PLA filament.
To know more about Carbon nanofiber/polylactic acid check here:brainly.com/question/15913091
#SPJ4