Answer:
- <em><u>Passive solar energy</u></em>
Explanation:
First of all, you must know that you if you put an egg on a sidewalk you are dealing with energy from the Sun, i.e. solar energy, while geothermal energy is energy that comes from the inner of the Earth and biomass energy comes from plant or animal material.
The term passive solar energy refers to the fact that the energy of the sun is used directly for the intended task, which in this case is to cook the egg.
The term active solar energy refers to the fact that the energy of the Sun is converted into a different form of energy and then used for your purpose. For instance, if the energy of the Sun were used to produce electricity and then this electricity used to cook the egg, you would be using an acitve solar energy.
Answer:
C2H2O4
Explanation:
To get the molecular formula, we first get the empirical formula. This can be done by dividing the percentage compositions by the atomic masses. The percentage compositions are shown as follows :
C = 26.86%
H = 2.239%
O = 100 - ( 26.86 + 2.239) = 70.901%
We then proceed to divide by their atomic masses. Atomic mass of carbon is 12 a.m.u , H = 1 a.m.u , O = 16 a.m.u
The division is as follows:
C = 26.86/12 = 2.2383
H = 2.239/1 = 2.239
O = 70.901/16 = 4.4313
We now divide each by the smallest number I.e 2.2383
C = 2.2383/2.2383 = 1
H = 2.239/2.2383 = 1
O = 4.4313/2.2383 = 1.98 = 2
Thus, the empirical formula is CHO2.
To get the molecular formula, we use the molar mass .
(CHO2)n = 90
We add the atomic masses multiplied by n.
(12 + 1 + 2(16))n = 90
45n = 90
n = 90/45 = 2.
Thus , the molecular formula is C2H2O4
Answer:
588.2 mL
Explanation:
- FeSO₄(aq) + 2KOH(aq) → Fe(OH)₂(s) + K₂SO₄(aq)
First we <u>calculate how many Fe⁺² moles reacted</u>, using the given <em>concentration and volume of FeSO₄ solution</em> (the number of FeSO₄ moles is equal to the number of Fe⁺² moles):
- moles = molarity * volume
- 187 mL * 0.692 M = 129.404 mmol Fe⁺²
Then we convert Fe⁺² moles to KOH moles, using the stoichiometric ratios:
- 129.404 mmol Fe⁺² *
= 258.808 mmol KOH
Finally we<u> calculate the required volume of KOH solution</u>, using <em>the given concentration and the calculated moles</em>:
- volume = moles / molarity
- 258.808 mmol KOH / 0.440 M = 588.2 mL
1) d
2) b because the independent variable is the thing you change/control in an experiment
3) c because the dependent variable is the thing being measured in an experiment
4)hmm it might be d, as c and a are both correct as different sized feeders would make it an unfair test and different types of food would as well
5) c
6) a
7) b obviously because if he activated them at different times then the ones activated last would have an advantage