The radii of most atoms are actually measured in the Ǻ, or Angstrom. We can do it in nanometers too, however.
<span>First, we take the radius of the smallest atom, He (Helium). Atomic radius = .031 nm. The largest atom, stable atom is Fr (Francium), with atomic radius = .27 nm. </span>
<span>Therefore, the typical atomic radius is between .031 and .27 nm.</span>
Answer: 5.85kJ/Kmol.
Explanation:
The balanced equilibrium reaction is

The expression for equilibrium reaction will be,
![K_p=\frac{[p_{D}]\times [p_{C}]}^4{[p_{B}]^2\times [p_{A}]}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5Bp_%7BD%7D%5D%5Ctimes%20%5Bp_%7BC%7D%5D%7D%5E4%7B%5Bp_%7BB%7D%5D%5E2%5Ctimes%20%5Bp_%7BA%7D%5D%7D)
Now put all the given values in this expression, we get the concentration of methane.


Relation of standard change in Gibbs free energy and equilibrium constant is given by:

where,
R = universal gas constant = 8.314 J/K/mole
T = temperature = 
= equilibrium constant = 10.6



Thus standard change in Gibbs free energy of this reaction is 5.85kJ/Kmol.