If we assume the given segments are those from the vertices to the point of intersection of the diagonals, it seems one diagonal (SW) is 20 yards long and the other (TR) is 44 yards long. The area (A) of the kite is half the product of the diagonals:
... A = (1/2)·SW·TR = (1/2)·(20 yd)·(44 yd)
... A = 440 yd²
Two cheaper books = x
more expensive = 1.5x
so, 2.5x=150
150/2.5=x=60
therefore the more expensive book = 90
Hello!
To find the value of b, we need to use the Law of Sines. The law states,
sin A / a = sin B / b = sin C / c.
We are given these values: sin A = 55 degrees, side a = 8 cm, sin C = 82 degrees.
Since angle B is not given, we have to find it ourselves. We can find the measure of angle B by subtracting both the given angle values from 180 degrees because every triangle is equal to 180 degrees.
180 - 55 - 82 = 43 | The measure of sin B = 43 degrees.
sin (55) / 8 = sin (43) / b (multiply both sides by b)
0.10239... · b = 0.68199... (divide both sides by 0.10239...)
c = 6.6607...
The measure of side b is equal to about 6.7 centimeters.
I think what you need to do is make B = -5
3a = -2(-5) - 7
3a = 10 - 7
3a = 3
a = 1