<h2>
Mass of object in Earth is 1.37 kg</h2>
Explanation:
On planet B where the magnitude of the free-fall acceleration is 1.91g , the object weighs 25.74 N.
We have
Weight = Mass x Acceleration due to gravity
On planet B
25.74 = Mass x 1.91 g
25.74 = Mass x 1.91 x 9.81
Mass = 1.37 kg
Mass is constant for an object. It will not change with location.
Mass of object in Earth = Mass of object in Planet B
Mass of object in Earth = 1.37 kg
Answer:
Correct option a. one state variable T.
Explanation:
In the case of an ideal gas it is shown that internal energy depends exclusively on temperature, since in an ideal gas any interaction between the molecules or atoms that constitute it is neglected, so that internal energy is only kinetic energy, which depends Only of the temperature. This fact is known as Joule's law.
The internal energy variation of an ideal gas (monoatomic or diatomic) between two states A and B is calculated by the expression:
ΔUAB = n × Cv × (TB - TA)
Where n is the number of moles and Cv the molar heat capacity at constant volume. Temperatures must be expressed in Kelvin.
An ideal gas will suffer the same variation in internal energy (ΔUAB) as long as its initial temperature is TA and its final temperature TB, according to Joule's Law, whatever the type of process performed.
Answer:
Insulation helps to prevent that transfer of heat.
Answer: The light beam will not diffract out of the prism.
Explanation: The angle the light is entering the prism is greater than the critical angle therefore total internal reflection will occur. Hope this helps :)
Current Density is the amount of current that a conductor can safely carry without undue heating per cross - sectional area.
Current Density = Current carrying capacity/Area