Answer:
3.8 secs
Explanation:
Parameters given:
Acceleration due to gravity, g = 9.8 
Initial velocity, u = 11.76 m/s
Final velocity, v = 49 m/s
Using one of Newton's equations of linear motion, we have that:

where t = time of flight of arrow
The sign is positive because the arrow is moving downward, in the same direction as gravitational force.
Therefore:

The arrow was in flight for 3.8 secs
Answer:
Explanation:
let force exerted by engine be F.Net force =( F-400)N, applying newton law
F-400 = 1.5 x 10³x18 =27000 ,
F = 27400 N.
velocity after 12 s = 0 + 18 x 12 = 216 m/s
Average velocity = (0 + 216 )/2 = 108 m/s
Average power = force x average velocity = 27400 x 108 = 29.6 10⁵ W .⁶
b) At 12 s , velocity = 216 m/s
Instantaneous power = velocity x force = 216 x 27400 = 59.2 x 10⁶ W.
Stars having less mass collapses early than those with more mass. This can be explained by Einstein's equation E=mc².
According to this equation, mass of stars is converted into light due to thermonuclear reactions occuring in the core of star which acts as engine of the stars. This thermonuclear reactions keeps star alive. Thermonuclear reactions occurs slowly in massive stars hence massive stars live more than light stars.
Answer:

Explanation:
From the question we are told that:
Radius 
Charge Density 
Distance
Generally the equation for electric field is mathematically given by


