Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Answer:
514.5 g.
Explanation:
- The balanced equation of the reaction is: 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O.
- It is clear that every 2.0 moles of NaOH react with 1.0 mole of H₂SO₄ to produce 1.0 mole of Na₂SO₄ and 2.0 moles of 2H₂O.
- Since NaOH is in excess, so H₂SO₄ is the limiting reactant.
- We need to calculate the no. of moles of 355.0 g of H₂SO₄:
n of H₂SO₄ = mass/molar mass = (355.0 g)/(98.0 g/mol) = 3.622 mol.
Using cross multiplication:
∵ 1.0 mol H₂SO₄ produces → 1.0 mol of Na₂SO₄.
∴ 3.622 mol H₂SO₄ produces → 3.662 mol of Na₂SO₄.
- Now, we can get the theoretical mass of Na₂SO₄:
∴ mass of Na₂SO₄ = no. of moles x molar mass = (3.662 mol)(142.04 g/mol) = 514.5 g.
Hey there!:
1) The additional stability that accompanies the formation of the network<span>Crystalline is measured as network enthalpy.
</span>2) The reticular energy is the energy released when the solid Crystal isform from separate ions in the gaseous state. Always exothermic.<span>
3) </span>The enthalpy of the network depends directly on the size of the loads and conversely in the distance between the ions .
hope this helps!
Answer:
It is expressed as a multiple of one-twelfth the mass of the carbon-12 atom, 1.992646547 × 10−23 gram, which is assigned an atomic mass of 12 units. ... In this scale 1 atomic mass unit (amu) corresponds to 1.660539040 × 10−24 gram.
A Anything that has mass and takes up space