Answer:
3.84 Ω
Explanation:
From the question given above, the following data were obtained:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = IV
Recall:
V = IR
Divide both side by R
I = V/R
P = V/R × V
P = V² / R
Where:
P => Electrical power
V => Voltage
I => Current
R => Resistance
With the above formula (i.e P = V²/R), we can calculate resistance as illustrated below:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = V²/R
150 = 24² / R
150 = 576 / R
Cross multiply
150 × R = 576
Divide both side by 150
R = 576 / 150
R = 3.84 Ω
Thus, the resistance is 3.84 Ω
Answer is: <span>de Broglie wavelength of a proton is </span>3,4·10⁻⁵ nm.
v(proton) = 0,038 · 3·10⁸ m/s.
v(proton) = 1,14·10⁷ m/s; speed of proton.
m(proton) = 1,67·10⁻²⁷ kg.
h = 6,62607004·10⁻³⁴ m²·kg/s; Planck constant.
λ(proton) = h / m(proton) · v(proton).
λ(proton) = 6,62607004·10⁻³⁴ m²·kg/s ÷ (1,67·10⁻²⁷ kg · 1,14·10⁷ m/s).
λ(proton) = 3,48·10⁻¹⁴ m · 10⁹ nm/m = 3,4·10⁻⁵ nm.
Density=mass/volume
Mass = 0.0500g
Volume = 6.40mL
0.0500g/6.40mL = 0.0078g/mL
The answer is
<span>
only carboxyl groups (=C=OO-</span>
I believe the correct answer from the choices listed above is option B. Stainless steel is an example of a solid-solid solution. It is an alloy which is made up of different metals <span>such as </span>carbon<span>, </span>manganese<span>, phosphorus, sulfur, nickel, chromium and others. Hope this answers the question.</span>