Answer:
1.25 M HCO₃⁻ / 1.25 M CO₃²⁻
Explanation:
Buffer capacity refers to the amount of a strong acid or base required per liter of the buffer to change its pH by one. This amount is directly related to the concentration of the conjugate acid-base pair in the buffer since the buffer pair neutralizes the strong acid or base.
Thus, the highest buffer capacity is found in the solution that has the highest concentration of the conjugate acid-base pair, which is 1.25 M HCO₃⁻ / 1.25 M CO₃²⁻
.
Answer:
ΔT=-747,13°C
Explanation:
Sensible heat is<em> the amount of thermal energy that is required to change the temperature of an object</em>, the equation for calculating the heat change is given by:
Q=msΔT
where:
- Q, heat that has been absorbed or realeased by the substance [J]
- m, mass of the substance [g]
- s, specific heat capacity [J/g°C] (
- ΔT, changes in the substance temperature [°C]
To solve the problem, we clear ΔT of the equation and then replace our data:
Q=msΔT
ΔT=Q/ms
Δ
°C
<em>(Note that Q=-14900 J because there is a </em><u><em>LOST</em></u><em> of thermal energy)</em>
Thus, the change in temperature of the steel bar is -747,13°C, meaning that the temperature of the bar decreases.
Answer:
Al + 3AgCl → AlCl₃ + 3Ag
Explanation:
The given equation is:
Al + AgCl →
We are to find the product and hence balance the equation. This problem is a simple single replacement reaction.
By virtue of this, Aluminum will displace Ag from the solution:
Al + AgCl → AlCl₃ + Ag
We then balance the equation:
Al + 3AgCl → AlCl₃ + 3Ag
Answer:
below
Explanation:
1. The areas that have latitudes which are closer to the equator are generally hotter than those areas that are closer to the north and south poles.
2. Temperature is inversely related to latitude, as latitude increases from the equator (moving north or south) the temperature decreases.
Hope this helps! best of luck <3
Answer:
0 g.
Explanation:
Hello,
In this case, since the reaction between methane and oxygen is:

If 0.963 g of methane react with 7.5 g of oxygen the first step is to identify the limiting reactant for which we compute the available moles of methane and the moles of methane consumed by the 7.5 g of oxygen:

Thus, since oxygen theoretically consumes more methane than the available, we conclude the methane is the limiting reactant, for which it will be completely consumed, therefore, no remaining methane will be left over.

Regards.