Answer:
Moles = Mass / Mr
Moles = Concentration x Volume
Explanation:
Moles can be worked out in several ways depending on the information you are given. Some of the equations containing moles are:
Moles = Mass / Mr
Moles = Concentration x Volume
A gravity well is the pull of gravity that a large body in space exerts. The larger the body (the more mass) the more of a gravity well it has. The Sun has a large (or deep) gravity well. Asteroids and small moons have much shallower gravity wells. Anything on a planet or moon is considered to be at the bottom of the gravity well. Entering space from the surface of a planet or moon means climbing out of the gravity well, something that often takes a huge amount of energy. The larger a planet or moon's gravity well is, the more energy it takes to achieve escape velocity and blast a ship off of it.
1) List the reactants: sodium bicarbonate (NaHCO₃) and citric acid (H₃C₆H₅O₇).
Reactants undergo change during a chemical reaction.
2) List the products: water (H₂O), carbon dioxide (CO₂) and sodium citrate (Na₃C₆H₅O₇).
Products are the substances formed from chemical reactions.
3) The balanced chemical equation:
3NaHCO₃ + H₃C₆H₅O₇ → 3H₂O + 3CO₂ + Na₃C₆H₅O₇.
Answer:
A
Explanation:
First there is molecular size. Large molecules have more electrons and nuclei that create van der Waals attractive forces, so their compounds usually have higher boiling points than similar compounds made up of smaller molecules. ... Molecular shape is also important, as the second group of compounds illustrate.
Answer: There are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.
Explanation:
Given:
= 2.25 L,
= 9.0 mol
= 1.85 L,
= ?
Formula used to calculate the moles of helium are as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that there are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.