The building of mountains comes from convergent boundaries, because when two plates ram into each other, it creates a mountain. It's like having 2 piles of sand. When you try and shove them together, they end up forming a hill instead of making a neat surface. Volcanoes often occur at subduction zones (look up the ring of fire (not the song ;) ) because when the plate from the ocean sinks into the mantle, the water it absorbed lowers the melting point of the rock. This makes the rock turn into magma which rises to the surface and forms volcanoes.
There are various reasons why a measurement tool cannot be accurate. One of them is thermal contraction and expansion varies according to seasons.
<h3>What are Accuracy and Precision?</h3>
There are two ways to assess observational error: accuracy and precision. Precision measures how closely two measurements are to one another, whereas accuracy measures how close a group of measurements is to its actual value. In other words, precision is a measure of statistical variability and a description of random errors.
We can say that a tool can be precise, but it cannot be accurate. There are various reasons behind that, some of them are :
- It may not be calibrated properly. If there are no reliable standards to use for calibration, this may occur.
- Perhaps it strayed. This is why electronic scales include a tare function—they are terrible in this area.
- Perhaps the measurements are not linear. Our calipers might have been quite precise at the 2-inch standard, where they were calibrated, but inaccurate at other dimensions.
- Temperature is one environmental component that the instrument might be sensitive to. These effects might be compensated for, but the compensation might not be ideal. This issue affects both dissolved solids meters and picometers.
These are some of the reasons due to which measurement tool cannot be accurate.
To get more information about Accuracy and Precision :
brainly.com/question/15276983
#SPJ1
Answer:
0.025V + (0.000218V/s³) t³
Explanation:
Parameters given:
Radius of coil, r = 3.85 cm = 0.0385 m
Number of turns, N = 450
Magnetic field, B = ( 1.20×10^(−2) T/s )t + (2.60×10^(−5) T/s4 )t^4.
The magnitude of Induced EMF is given as:
E = N * A * dB/dt
Where A is the area of the coil
First, we differentiate the magnetic field with respect to time:
dB/dt = 0.012 + 0.000104t³
Therefore, EMF will be:
E = 450 * 3.142 * (0.012 + 0.000104t³)
E = 2.096(0.012 + 0.000104t³)
E = 0.025V + (0.000218V/s³)t³