Answer:

Explanation:
Hello,
In this case, we need to remember that for the required time for a radioactive nuclide as radium-226 to decrease to one half its initial amount we are talking about its half-life. Furthermore, the amount of remaining radioactive material as a function of the half-lives is computed as follows:

Therefore, for an initial amount of 100 mg with a half-life of 1590 years, after 1000 years, we have:

Best regards.
1 mol = 6.023x10^23 number of molecules (Avogadro's number)
1 : 6.023x10^23
X : 4.91x10^22
(6.023x10^23)X = 4.91x10^22
X = 4.91x10^22/6.023x10^23
X = 0.082 Moles
Answer:
A) M = 100X
B) M = 36X
C) M = 178.88X
Explanation:
Given data:
ASTM grain size number 7
a) total grain per inch^2 - 64 grain/inch^2
we know that number of grain per square inch is given as

where M is magnification, n is grain size
therefore we have

solving for M we get
M = 100 X
B) total grain per inch^2 = 500 grain/inch^2
we know that number of grain per square inch is given as

where M is magnification, n is grain size
therefore we have
solving for M we get
M = 36 X
C) Total grain per inch^2 = 20 grain/inch^2
we know that number of grain per square inch is given as

where M is magnification, n is grain size
therefore we have
solving for M we get
M = 178.88 X