The law of conservation of mass states that mass or matter cannot be created or destroyed, only transferred or recombined.
For chemical equations, this law means that each element must be accounted for equally both for reactants and products. So the same numbers of each atom must match on each side, hence the necessity for balancing the chemical equation accurately. This created a field of chemistry called Stoichiometry, which accounts for the conservation of matter throughout chemical reactions and processes.
Answer:
if the heat of reaction is positive, the reaction is said to be endothermic; if negative, exothermic.
Explanation:
hope this helps
i am so sorry if this is the wrong answer
Answer:
A) An ionic bond is much stronger than most covalent bonds.
Explanation:
D) Ionic compounds have high melting points causing them to be solid at room temperature, and conduct electricity when dissolved in water. Covalent compounds have low melting points and many are liquids or gases at room temperature.
C) An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms.
A) Covalent bonds are stronger if you compare with ionic molecules, because their molecular orbital overlap is bigger. However, ionic molecules form lattices, thus the energy to break this lattice bond is stronger hence the ionic bond is stronger.
Soap is the sodium or potassium salt of long chain of fatty acid. Fatty acids when treated with NaOH or KOH forms Soap. This process is called as Saponification. Examples of Soap are as follow,
1. Sodium Stearate C₁₇H₃₅COONa
2. Potassium Oleate C₁₇H₃₃COOK
Reaction of Soap with MgCl₂;
When Soap is treated with MgCl₂ or CaCl₂ it forms insoluble precipitate called S.C.U.M. The reactions with MgCl₂ are as follow,
2C₁₇H₃₅COONa + MgCl₂ --------> 2C₁₇H₃₅COOMg + 2 NaCl
2C₁₇H₃₃COOK + MgCl₂ --------> 2C₁₇H₃₅COOMg + 2 KCl
These reaction are often found in hard water. And this reaction decreases the effectiveness of soap.