Kinetic energy of an object can be expressed in terms of its mass m and velocity v as:
KE = 1/2 * m* v²
Thus higher the velocity, greater will be the Kinetic energy. Now, as the box moves along a ramp from top to bottom, its velocity increases and so does the KE. Hence, kinetic energy is maximum at the bottom
Ans B) at the bottom
It would be C, because Ionic bonds have to deal with valence electrons ( the outer shell ones)
Answer:
Y Q W Z X
Explanations:
The most reactive element is the element that will displace an element from it compound . The most reactive element will replace the less reactive element in it compound.
Q+ + Y Reaction occurs
Since the reaction occurs the element Y which is more reactive displaced element Q from it compound.
Q+W+ Reaction occurs
The reaction occurs, that means element Q replaces element w from it compound. Element Q is therefore more reactive than element W.
W+Z+ Reaction occurs
The reaction also occurs . This is an indication that element W replaces element Z in it compound. This means element W is very reactive than element Z.
X+Z+ No reaction
There is no reaction here. This is an indication that element X is less reactive than element Z. This is why element X can't displace element Y in it compound.
Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Answer:
The pH value of the mixture will be 7.00
Explanation:
Mono and disodium hydrogen phosphate mixture act as a buffer to maintain pH value around 7. Henderson–Hasselbalch equation is used to determine the pH value of a buffer mixture, which is mathematically expressed as,
![pH=pK_{a} + log(\frac{[Base]}{[Acid]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%29)
According to the given conditions, the equation will become as follow
![pH=pK_{a} + log(\frac{[Na_{2}HPO_{4} ]}{[NaH_{2}PO_{4}]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BNa_%7B2%7DHPO_%7B4%7D%20%5D%7D%7B%5BNaH_%7B2%7DPO_%7B4%7D%5D%7D%29)
The base and acid are assigned by observing the pKa values of both the compounds; smaller value means more acidic. NaH₂PO₄ has a pKa value of 6.86, while Na₂HPO₄ has a pKa value of 12.32 (not given, but it's a constant). Another more easy way is to the count the acidic hydrogen in the molecular formula; the compound with more acidic hydrogens will be assigned acidic and vice versa.
Placing all the given data we obtain,

