14. a. Acidic
15. b. Weaker
16. d. Dilute and weak
Explanation:
14. Which type of the solution is one with the pH of 3?
Solution with pH from 1 to 7 are acidic, equal to 7 is neutral and from 7 to 14 basic. The solution with the pH equal to 3 is <u>acidic</u>.
15. The smaller the value of the base dissociation constant (Kb), the <u>weaker</u> the base.
The dissociation reaction of a base (B) is:
B + H₂O → BH⁺ + OH⁻
Kb is defined as:
Kb = ( [BH⁺] × [OH⁻] ) / ( [B] × [H₂O] )
The potency of the base depends on the concentration of the hydroxide ion [OH⁻], so if the Kb ratio is small it means that the concentration of hydroxide ion is smaller so the base will be <u>weaker</u>.
16. A 0.39 M solution of an acid that ionizes only slightly in solution would be termed <u>dilute and weak</u>.
The acid is weak because is only slightly ionizing in solution. The therm diluted is a little bit arbitrarily because we ask yourself "diluted in respect with what"? I would characterize the acid to be diluted at a concentration of 1 M and concentrated at a concentration of 10 M.
Learn more about:
pH
brainly.com/question/1402522
#learnwithBrainly
Answer:
207g
Explanation:
207.2 to be more specific
Answer:
The pressure of the gas would be 3.06 atm
Explanation:
Amonton's law states that the pressure is directly proportional to the absolute temperature of a gas under constant volume. The equation is:
P1 / T1 = P2 / T2
<em>Where P1 is the initial pressure = 3.16atm</em>
<em>T1 is initial absolute temperature = 273.15 + 32.2°C = 305.35K</em>
<em>P2 is our incognite</em>
<em>And T2 is = 273.15 + 22.9°C = 296.05K</em>
<em />
Replacing:
3.16atm / 305.35K = P2 / 296.05K
3.06 atm = P2
<h3>The pressure of the gas would be 3.06 atm</h3>
Explanation:
According to Le Chatelier's principle, any disturbance caused in an equilibrium reaction will shift the equilibrium in a direction that will oppose the change.
As the given reaction is as follows.

(a) When increase the temperature of the reactants or system then equilibrium will shift in forward direction where there is less temperature. It is possible for an endothermic reaction.
Thus, formation of
will increase.
- (b) When we decrease the volume (at constant temperature) of given reaction mixture then it implies that there will be increase in pressure of the system. So, equilibrium will shift in a direction where there will be decrease in composition of gaseous phase. That is, in the backward direction reaction will shift.
Hence, formation of
will decrease with decrease in volume.
- When we increase the mount of
then equilibrium will shift in the direction of decrease in concentration that is, in the forward direction.
Thus, we can conclude that formation of
will increase then.
Answer:
customary Is the required system