Answer:
Explanation:
For the simple pendulum problem we need to remember that:
,
where is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:
,
where is the angular frequency.
There is also an equation that relates the oscillation period and the angular frequeny:
,
where T is the oscillation period. Now, we can easily solve for L:
Answer:
The height of the image is, h' = 6.0 cm
The image is erect.
Explanation:
Given data,
The object distance, u = -5 cm
The focal length of convex lens, f = 10 cm
The object height, h = 3 cm
The lens formula,
v = -10 cm
The magnification factor of lens
m = 2
h' = 6 cm
The height of the image is, h' = 6 cm
The image is erect.
Answer:
T = 20.84°C
Explanation:
From the law of conservation of energy:
Heat Lost by Copper Block = Heat Gained by Aluminum Calorimeter + Heat Gained by Water
where,
= mass of copper = 227 g
= mass of water = 844 g
= mass of aluminum = 155 g
= specific heat capacity of calorimeter = 385 J/kg.°C
= specific heat capacity of water = 4200 J/kg.°C
= specific heat capacity of aluminum = 890 J/kg.°C
= change in temperature of copper = 283°C - T
= change in temperature of water = T - 14.6°C
= change in temperature of aluminum = T - 14.6°C
T = equilibrium temperature = ?
Therefore,
<u>T = 20.84°C</u>
Answer:
A. False
B True
C. False
D.False
E. True
F. False
G. False
H. False
I. True
Explanation:
A. False: The system being analyzed consists of the bug and the car. These are the two bodies involved in the collision.
B. True: The system being analyzed consists of the bug and the car
C. False: The magnitudes of the change in velocity are different from the car and the bug. The velocity of the bug changes from 0 to the velocity of the car, while there is no noticeable change in the velocity of the car
D.False: There is barely any change in the momentum of the car since the mass of the bug is very small.
E. True: Since the mass of the bug is small, and was initially at rest, the magnitude of the change in monentum will be large because the new velocity will be that of the car.
F. False: The system being analyzed consists of the bug and the car. Those are the two bodies involved in the collision
G. False: The car barely changes in velocity since the mass of the bug is small.
H. False: The car barely changes in momentum because the collision does not affect its speed so much. on the other hand the momentum change of the bug is large since its mass is small.
I. True: The bug which was initially at rest will begin moving with the velovity of the speeding car, while the car barely changes in its velocity