Answer:
= 391.67 Hz
Explanation:
The sound of lowest frequency which is produced by a vibrating sting is called its fundamental frequency (
).
The For a vibrating string, the fundamental frequency (
) can be determined by:
= 
Where v is the speed of waves of the string, and L is the length of the string.
L = 42.0 cm = 0.42 m
v = 329 m/s
= 
= 
= 391.6667 Hz
The fundamental frequency of the string is 391.67 Hz.
The mass contributes with the time of thermal energy transfer with respect to the material type but most importantly the material type will determine rate at which the material absorbs the transfer of heat or thermal energy by either three types, conduction, convection and radiation.
An electric engine turning a workshop sanding rotation at 1.00 × 10² rev/min is switched off. Take the wheel includes a regular negative angular acceleration of volume 2.00 rad/s². 5.25 moments long it takes the grinding rotation to control.
<h3>What is negative angular acceleration?</h3>
- A particle that has a negative angular velocity rotates counterclockwise.
- Negative angular acceleration () is a "push" that is hence counterclockwise.
- The body will speed up or slow down depending on whether and have the same sign (and eventually go in reverse).
- For instance, when an object rotating counterclockwise slows down, acceleration would be negative.
- If a rotating body's angular speed is seen to grow in a clockwise direction and decrease in a counterclockwise direction, it is given a negative sign.
- It is known that a change in the linear acceleration correlates to a change in the linear velocity.
Let t be the time taken to stop.
ω = 0 rad/s
Use the first equation of motion for rotational motion
ω = ωo + α t
0 = 10.5 - 2 x t
t = 5.25 second
To learn more about angular acceleration, refer to:
brainly.com/question/21278452
#SPJ4
A proton has positive charge of 1, that is, equal but opposite to the charge of an electron. A neutron, like the name implies, is neutral with no net charge. The charge is believed to be from the charge of the quarks that make up the nucleons (protons and neutrons).