I assume you mean that the car's motor is not running ... the car is just
sitting there.
If that's so, then the car's mechanical energy is just like the mechanical
energy of any other object. It has potential energy if it's in a high place
from which it can roll or fall, and it has kinetic energy if it's moving.
-- If you make the car move by pushing it, then you gave it kinetic energy
that it didn't have while it was just sitting there.
-- If it's already moving slowly, and you're able to make it move faster by
pushing, then you increased its kinetic energy.
-- If you're able to push it up a hill, no matter how small the hill is but just
to any higher place, then you gave it more gravitational potential energy
than it had before you came along.
In all of these cases, if you exert a force and keep exerting it through some
distance while the car moves, then you have done "work", which is just
another name for mechanical energy, and your work adds to the mechanical
energy of the car.
But if you didn't move the car, then no matter how hard you pushed, no work
was done, and the car's mechanical energy didn't change.
The answer is Newton because it can be derived from the other units.
1 Newton = 1 kg⋅m⋅s<span>−2</span>
When designing tires for a car, an engineer must consider the materials that will be used to fabricate the tires ... both the suitability of the materials for the purpose, and their cost.
For example, the engineer should not design car tires to be made of glass or of silk, since these would not hold up well when driving on concrete roads, and they would need to be replaced too often.
For another example, he should not design car tires to be made of gold or polished diamond, since these would be beyond the price range of most car owners, and also, these tires would be very susceptible to being stolen by nefarious and dishonest individuals in the middle of the night.
.
I hope this answer is helpful. The question you posted is a very difficult one, because there are no answer choices listed, and also because the question has the mysterious unknown term "the following" in it.
The total amount of mass in the Sun is 2.0 x 10^30 kg, 5% of whig is hydrogen, and 13% of which becomes available for fusion. Thus, the total mass of hydrogen available for fusion over the Sun's lifetime is simply 13% of 75% of the total mass of the Sun or:
2.0 x 10^30 kg x .75 x .13
=<u> 1.95 x 10^29 kg</u>
<u />
Nuclear fusion occurs only in the core of the sun where temperature pressure and density are highest. The photosphere can be seen with visible light telescopes, the chromosphere with ultraviolet telescopes, and the corona most easily with X-ray telescopes.
The Sun is a typical star and also the closest star to the Earth. It is composed of 73% hydrogen, 25% helium, and 2% other elements. Since the gravitational pull of the sun on the earth is the centripetal force that causes the earth to move in a circular motion around the sun, we can use Newton's law of universal gravitation to find the mass of the sun without visiting it.
Learn more about The temperature here:- brainly.com/question/24746268
#SPJ4
your answer is D. 8km/h west please mark me brainliest and ask for help if you have any more problems