Aeronautical maps are usually meant to be used by pilots and air aviation professionals in other to navigate or traverse though the sky. With various elements such as vegetation, hills, valleys being depicted by color coded keys or legend. Hence, the absence of color on an aeronautical map make the <em>representation of elements very difficult</em>.
Visual map interpretation is usually aided by the use of legends. The legend hold the key to the elements which are represented on the map. Usually, a combination of colors and shapes makes up the legend and makes map interpretation easy.
Therefore, the absence of various color palletes for representation on a black and white aeronautical map will make it difficult to use.
Learn more : brainly.com/question/25323763
Answer:
9266 feet
Explanation:
with Earth's gravity and long it fell that's as good as it gets if there was no other factors like wind mass weight but your welcome
Answer:
The electric flux is 
Explanation:
Given:
- Radius of the disc R=0.50 m
- Angle made by disk with the horizontal

- Magnitude of the electric Field

The flux of the Electric Field E due to the are dA in space can be found out by using Gauss Law which is as follows

where
is the total Electric Flux- E is the Electric Field
- dA is the Area through which the electric flux is to be calculated.
Now according to question we have

Hence the electric flux is calculated.
Answer:
<u>Foot per second. Foot-pound-second system. Frames per second, the frequency (rate) at which consecutive images (frames) appear on a display.</u>
Explanation:
:)
Answer:
the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Explanation:
Given that;
weight of vehicle = 4000 lbs
we know that 1 kg = 2.20462
so
m = 4000 / 2.20462 = 1814.37 kg
Initial velocity
= 60 mph = 26.8224 m/s
Final velocity
= 30 mph = 13.4112 m/s
now we determine change in kinetic energy
Δk =
m(
² -
² )
we substitute
Δk =
×1814.37( (26.8224)² - (13.4112)² )
Δk =
× 1814.37 × 539.5808
Δk = 489500 Joules
we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule
so
Δk = 489500 / 3.6 × 10⁶
Δk = 0.13597 ≈ 0.136 kWh
Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh