1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
3 years ago
13

Suppose you are helping Galileo measure the acceleration due to gravity by dropping a canon ball from the tower of Pisa, You mea

sure the height of the tower to be h =183 ft, and you estimate that the uncertainty is delta h=0.2 ft. You measure the drop time using your pulse and arrive at delta t =3.5 sec with an estimated uncertainty delta t= 0.5 sec. You perform the experiment just one time. If the formula propagated error is
delta g= g (√(delta h/h)^2 +(2* delta t/t)^2)

what would you report as your result (including uncertainty) in ft/sec?
Physics
1 answer:
Anni [7]3 years ago
5 0

It is given that the height of the tower is

h=183 ft.

The uncertainty the measurement of this height is

\Delta h=0.2 ft

Drop time is measured as:

t=3.5s

The uncertainty in measurement of time is:

\Delta t=0.5 s

Using the equation of motion: h=ut+\frac{1}{2} at^2 where, h is the distance covered, u is the initial velocity, a is the acceleration and t is the time.

u=0 (because canon ball is in free fall). we need to calculate the value of a=g.

\Rightarrow h=\frac{1}{2}gt^2

\Rightarrow g=\frac{2h}{t^2}\\ \Rightarrow g=\frac{2\times 183ft}{(3.5s)^2}=29.87 ft/s^2

The uncertainty in this value is given by:

\Delta g=g\sqrt{(\frac{\Delta h}{h})^2+(\frac{2\Delta t}{t})^2}

Substitute the values:

\Delta g=29.87\sqrt{(\frac{0.2 }{183})^2+(\frac{2\times 0.5}{3.5})^2}=29.87\sqrt{1.19\times 10^{-6}+0.08}=29.87\times \sqrt{0.08}=29.87\times 0.28=8.44 ft/s^2



You might be interested in
What is the minimum force require to move a 5kg wooden crate on a wooden floor?
kolbaska11 [484]

You need to know the coefficient of static friction between a wooden object and a wooden surface. I'll denote it with <em>µ</em>. If you're given a specific value you should obviously use that.

By Newton's second law, the horizontal and vertical net forces are

• net horizontal:

∑ <em>F</em> = <em>p</em> - <em>f</em> = 0

• net vertical:

∑ <em>F</em> = <em>n</em> - <em>w</em> = 0

where

<em>p</em> = magnitude of the <u>p</u>ushing force

<em>f</em> = mag. of <u>f</u>riction

<em>n</em> = mag. of the <u>n</u>ormal force

<em>w</em> = <u>w</u>eight of the crate

The second equation gives

<em>n</em> = <em>w</em> = (5 kg) (9.8 m/s²) = 49 N

Friction is proportional to the normal force by a factor of <em>µ</em>, so

<em>f</em> = <em>µ</em> (49 N) = 49<em>µ</em> N

To overcome static friction, the push has to exceed this in magnitude, so that

<em>p</em> > 49<em>µ</em> N

For instance, if <em>p</em> = 0.25, then <em>p</em> would need to greater than 12.25 N. (This example isn't particularly helpful, though, since both possibly correct options are larger than 12.25 N...)

7 0
3 years ago
Be sure to answer all parts. Compare the wavelengths of an electron (mass = 9.11 × 10−31 kg) and a proton (mass = 1.67 × 10−27 k
Harrizon [31]

Explanation:

Given that,

(a) Speed, v=6.66\times 10^6\ m/s

Mass of the electron, m_e=9.11\times 10^{-31}\ kg

Mass of the proton, m_p=1.67\times 10^{-27}\ kg

The wavelength of the electron is given by :

\lambda_e=\dfrac{h}{m_ev}

\lambda_e=\dfrac{6.63\times 10^{-34}}{9.11\times 10^{-31}\times 6.66\times 10^6}

\lambda_e=1.09\times 10^{-10}\ m

The wavelength of the proton is given by :

\lambda_p=\dfrac{h}{m_p v}

\lambda_p=\dfrac{6.63\times 10^{-34}}{1.67\times 10^{-27}\times 6.66\times 10^6}

\lambda_p=5.96\times 10^{-14}\ m

(b) Kinetic energy, K=1.71\times 10^{-15}\ J

The relation between the kinetic energy and the wavelength is given by :

\lambda_e=\dfrac{h}{\sqrt{2m_eK}}

\lambda_e=\dfrac{6.63\times 10^{-34}}{\sqrt{2\times 9.11\times 10^{-31}\times 1.71\times 10^{-15}}}

\lambda_e=1.18\times 10^{-11}\ m

\lambda_p=\dfrac{h}{\sqrt{2m_pK}}

\lambda_p=\dfrac{6.63\times 10^{-34}}{\sqrt{2\times 1.67\times 10^{-27}\times 1.71\times 10^{-15}}}

\lambda_p=2.77\times 10^{-13}\ m

Hence, this is the required solution.

6 0
3 years ago
A point charge of 5.7 µc moves at 4.5 × 105 m/s in a magnetic field that has a field strength of 3.2 mt, as shown in the diagram
Sauron [17]

The magnitude of the force on the charge by the influence of the magnetic field will be 6.6*10^-3 N

<h3>What is magnetic force?</h3>

Magnetic force, attraction or repulsion that arises between electrically charged particles because of their motion.The magnitude of the magnetic force acting on the charge is given by:

\rm F=qvBsin\theta

where

The magnitude of the charge   q=5.7\ \mu C =5.7\times 10^{-6} \ C

The velocity of the charge        v=4.5\times 10^5\ \frac{m}{s}

The magnitude of the magnetic field   3.2\ mT=0.0032\ T

The angle between the directions of v and B  \theta =90^o-37^o=53^o

By substituting the values we will get:

F=(5.7\times 10^}-6})(4.5\times 10^5)(0.0032)(Sin53^o)

F=6.6\times 10^{-3}\ N

Hence the magnitude of the force on the charge by the influence of the magnetic field will be 6.6*10^-3 N

To know more about Magnetic force follow

brainly.com/question/14411049

3 0
2 years ago
Definition for compression and rarefraction
s344n2d4d5 [400]
Compression and rarefaction are two phenomenon occurs in longitudunal wave!

when there is denser particle gathering in that wave , there we called it compression and the rarer part of particles is rarefaction !
6 0
3 years ago
Read 2 more answers
g Two masses are involved in a collision on an axis (one dimensional). One mass is six times the mass of the second. Both masses
statuscvo [17]

Answer:

v₁f = 0.5714 m/s   (→)

v₂f = 2.5714 m/s   (→)

e = 1  

It was a perfectly elastic collision.

Explanation:

m₁ = m

m₂ = 6m₁ = 6m

v₁i = 4 m/s

v₂i = 2 m/s

v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i +  ((2m₂) / (m₁ + m₂)) v₂i

v₁f = ((m – 6m) / (m + 6m)) * (4) +  ((2*6m) / (m + 6m)) * (2)  

v₁f = 0.5714 m/s   (→)

v₂f = ((2m₁) / (m₁ + m₂)) v₁i +  ((m₂ – m₁) / (m₁ + m₂)) v₂i

v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)

v₂f = 2.5714 m/s   (→)

e = - (v₁f - v₂f) / (v₁i - v₂i)   ⇒   e = - (0.5714 - 2.5714) / (4 - 2) = 1  

It was a perfectly elastic collision.

8 0
3 years ago
Other questions:
  • A remote-controlled car runs on a 9V battery.  If a 1.5A current is running through the circuit, what resistance is the car prov
    14·1 answer
  • Through which material do P waves move the fastest?
    5·1 answer
  • Express in words AND mathematically the relationship between period and frequency
    7·2 answers
  • PLS HELP YOU BEAUTFUL PPL
    8·1 answer
  • What is a circuit,s resistance if 12v produces 2A of current ?
    13·1 answer
  • An object has rotational inertia I. The object, initially at rest, begins to rotate with a constant angular acceleration of magn
    8·1 answer
  • What tension must a 50.0 cm length of string support in order to whirl an attached 1,000.0 g stone in a circular path at 5.00 m/
    8·1 answer
  • The ____ is a particle with one unit of positive change
    7·2 answers
  • Complete the table:
    7·1 answer
  • A shield of material that reflects neutrons is placed around a radioactive sample. Which change in the nuclear reaction is most
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!