Answer:
no motion means no velocity, so the y values willl always be 0 as ur time (x) value increses
Explanation:
Answer:
185.25 m/s
Explanation:
consider the motion of the combination of bullet and block after the collision
v₀ = initial speed just after the collision
v' = final speed = 0 m/s
μ = Coefficient of friction = 0.6
g = acceleration due to gravity = 9.8 m/s²
a = acceleration of the combination = - μ g = - (0.6) (9.8) = - 5.88 m/s²
d = stopping distance = 13 m
using the kinematics equation
v'² = v₀² + 2 a d
0² = v₀² + 2 (- 5.88) (13)
v₀ = 12.4 m/s
m = mass of the bullet = 9.9 g = 0.0099 kg
M = mass of the wood = 138 g = 0.138 kg
v = speed of bullet before collision
v₀ = speed of combination after the collision = 12.4 m/s
Using conservation of momentum
m v = (m + M) v₀
(0.0099) v = (0.0099 + 0.138) (12.4)
v = 185.25 m/s
Answer:
Explanation:
Given
wavelength of emissions are


Energy is given by

where h=Planck's constant
x=velocity of Light
=wavelength of emission




frequency corresponding to this emission



Energy corresponding to 



frequency corresponding to this emission



Pnet = Po + dgh
<span>Density of saltwater = 1030 kg/m^3. </span>
<span>Disregard the thickness. Assuming it's a circular window, then the area is pi(r^2). </span>
<span>d = 20 cm = 0.2 m </span>
<span>r = d/2 = 0.1 m </span>
<span>A = pi(r^2) </span>
<span>A = 3.14159265(.1^2) </span>
<span>A = 0.0314159265 m^2 </span>
<span>p = F/A </span>
<span>p = (1.1 x 10^6) / (0.0314159265) </span>
<span>p = 35,014,087.5 Pa </span>
<span>1 atm = 101,325 Pa </span>
<span>P = Po + dgh </span>
<span>h = (P - Po) / dg </span>
<span>h = (35,014,087.5 - 101,325) / (1030 x 9.81) </span>
<span>h = 3 455.23812 m </span>
<span>h = 3.5 km</span>